Method for quantification of myocardial infarction and inflammatory cell infiltration in rat cardiac tissue

1988 ◽  
Vol 20 (3) ◽  
pp. 225-235 ◽  
Author(s):  
D.E. Griswold ◽  
L.M. Hillegass ◽  
D.E. Hill ◽  
J.W. Egan ◽  
E.F. Smith
2017 ◽  
Vol 42 (3) ◽  
pp. 1153-1164 ◽  
Author(s):  
Xiangrao Li ◽  
Jian Zhou ◽  
Kai Huang

Background/Aims: The expression of a novel lncRNA, myocardial infarction associated transcript 1(Mirt1), has been shown to be upregulated in acute myocardial infarction (AMI). However, the role of Mirt1 in AMI is not clear. Methods: In this study, we analyzed the level of Mirt1 in cardiomyocytes and cardiac fibroblasts in AMI mice. Moreover, adenovirus mediated knockdown of Mirt1 was employed to clarify its roles in AMI mice or cultured cardiac fibroblasts. The cardiac functions and infarct size of AMI mice were examined, and tissues and cultured cells were collected and processed for histology and biochemical examination. Results: We demonstrated that Mirt1 was mainly expressed in cardiac fibroblasts, and that knockdown of Mirt1 improved cardiac functions, decreased cardiomyocytes apoptosis and attenuated inflammatory cell infiltration in vivo. Furthermore, knockdown of Mirt1 in cardiac fibroblasts not only attenuated the apoptosis of cardiomyocytes, but also suppressed the migration of macrophages under hypoxia in vitro. NF-κB signaling pathway, activated under hypoxia, was also inhibited by Mirt1 knockdown in fibroblasts. Conclusions: Knockdown of Mirt1 attenuates AMI injury presumably by decreasing cardiomyocytes apoptosis and reducing inflammatory cell infiltration. These effects could be attributed, at least partly, to inhibition of the NF-κB pathway, resulting in decreased expression of inflammatory factors.


2008 ◽  
Vol 70 (3) ◽  
pp. 269-273
Author(s):  
Taisuke KAMIYAMA ◽  
Yoshihiro KAWAGUCHI ◽  
Masami SASAKI ◽  
Masamichi SATOU ◽  
Kumiko MIURA ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Weigang Jia ◽  
Wei Wang ◽  
Rui Li ◽  
Quanyu Zhou ◽  
Ying Qu ◽  
...  

Abstract Background In recent years, it has been reported that Qinbai Qingfei Concentrated Pellet (QQCP) has the effect of relieving cough and reducing sputum. However, the therapeutic potentials of QQCP on post-infectious cough (PIC) rat models has not been elucidated. So the current study was aimed to scientifically validate the efficacy of QQCP in post infectious cough. Methods All rats were exposed to sawdust and cigarette smokes for 10 days, and intratracheal lipopolysaccharide (LPS) and capsaicin aerosols. Rats were treated with QQCP at dose of 80, 160, 320 mg/kg. Cough frequency was monitored twice a day for 10 days after drug administration. Inflammatory cell infiltration was determined by ELISA. Meanwhile, the histopathology of lung tissue and bronchus in rats were evaluated by hematoxylin-eosin staining (H&E). Neurogenetic inflammation were measured by ELISA and qRT-PCR. Results QQCP dose-dependently decreased the cough frequency and the release of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8, but exerted the opposite effects on the secretion of anti-inflammatory cytokines IL-10 and IL-13 in BALF and serum of PIC rats. The oxidative burden was effectively ameliorated in QQCP-treated PIC rats as there were declines in Malondialdehyde (MDA) content and increases in Superoxide dismutase (SOD) activity in the serum and lung tissue. In addition, QQCP blocked inflammatory cell infiltration into the lung as evidenced by the reduced number of total leukocytes and the portion of neutrophils in the broncho - alveolar lavage fluid (BALF) as well as the alleviated lung damage. Furthermore, QQCP considerable reversed the neurogenetic inflammation caused by PIC through elevating neutral endopeptidase (NEP) activity and reducing Substance P (SP) and Calcitonin gene related peptide (CGRP) expression in BALF, serum and lung tissue. Conclusions Our study indicated that QQCP demonstrated a protective role of PIC and may be a potential therapeutic target of PIC.


2013 ◽  
Vol 114 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Peter Marklund ◽  
C. Mikael Mattsson ◽  
Britta Wåhlin-Larsson ◽  
Elodie Ponsot ◽  
Björn Lindvall ◽  
...  

The impact of a 24-h ultraendurance exercise bout on systemic and local muscle inflammatory reactions was investigated in nine experienced athletes. Blood and muscle biopsies were collected before (Pre), immediately after the exercise bout (Post), and after 28 h of recovery (Post28). Circulating blood levels of leukocytes, creatine kinase (CK), C-reactive protein (CRP), and selected inflammatory cytokines were assessed together with the evaluation of the occurrence of inflammatory cells (CD3+, CD8+, CD68+) and the expression of major histocompatibility complex class I (MHC class I) in skeletal muscle. An extensive inflammatory cell infiltration occurred in all athletes, and the number of CD3+, CD8+, and CD68+ cells were two- to threefold higher at Post28 compared with Pre ( P < 0.05). The inflammatory cell infiltration was associated with a significant increase in the expression of MHC class I in muscle fibers. There was a significant increase in blood leukocyte count, IL-6, IL-8, CRP, and CK at Post. At Post28, total leukocytes, IL-6, and CK had declined, whereas IL-8 and CRP continued to increase. Increases in IL-1β and TNF-α were not significant. There were no significant associations between the magnitude of the systemic and local muscle inflammatory reactions. Signs of muscle degenerative and regenerative events were observed in all athletes with various degrees of severity and were not affected by the 24-h ultraendurance exercise bout. In conclusion, a low-intensity but very prolonged single-endurance exercise bout can generate a strong inflammatory cell infiltration in skeletal muscle of well-trained experienced ultraendurance athletes, and the amplitude of the local reaction is not proportional to the systemic inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document