Role of the carboxy-terminal sequence on the biological activity of human immune interferon (IFN-γ)

1988 ◽  
Vol 7 (3) ◽  
pp. 199-216 ◽  
Author(s):  
H. Döbeli ◽  
R. Gentz ◽  
W. Jucker ◽  
G. Garotta ◽  
D.W. Hartmann ◽  
...  
1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


Author(s):  
Patrick W. Gray ◽  
David Leung ◽  
Pamela J. Sherwood ◽  
Shelby L. Berger ◽  
Donald M. Wallace ◽  
...  

1983 ◽  
Vol 50 (02) ◽  
pp. 527-529 ◽  
Author(s):  
H M Phillips ◽  
A Mansouri ◽  
C A Perry

SummaryFibrinogen plays an integral part in ADP-induced platelet aggregation. Controversy exists in regard to the role of the carboxy termini of fibrinogen Aa chains in this reaction. We have attempted to clarify this problem in view of the availability of a highly purified FII fibrinogen fraction. Kabi fibrinogen or its purified fractions FI, FII and FIII-IV-V were added to washed platelets in the presence of Tyrode-HEPES buffer pH 7.4. Aggregation was initiated by the addition of calcium and ADP. These fibrinogen fractions equally promoted ADP-induced platelet aggregation. The major difference among these fractions is in their Aα chains. The FI fraction contains intact Aα chains while FII and FIH-IV-V fractions have one and two partially degraded Aα chains at the carboxy terminal portion respectively. We conclude that the carboxy terminal portion of the Aα chain does not play an important role in promoting ADP-induced platelet aggregation.


2015 ◽  
Author(s):  
Giulia Brigante ◽  
Bo Carlsson ◽  
Simone Kersseboom ◽  
Robin P Peeters ◽  
Theo J Visser

2019 ◽  
Vol 26 (6) ◽  
pp. 1027-1044 ◽  
Author(s):  
Giulia Freer ◽  
Fabrizio Maggi ◽  
Mauro Pistello

Background:The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens.Objective:This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence.Method:We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome.Results:A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism.Conclusion:The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.


1988 ◽  
Vol 53 (11) ◽  
pp. 2574-2582 ◽  
Author(s):  
Hedvig Medzihradszky-Schweiger ◽  
Helga Süli-Vargha ◽  
József Bódi ◽  
Kálmán Medzihradszky

A number of N-nitroso-2-chloroethyl-carbamoyl (Q(NO)) derivatives of α-melanotropin fragments have been synthesized and their effect on the frog skin melanocytes studied. Peptides substituted in this way possess the biological activity of the parent compounds, indicating that they preserved their receptor recognizing ability. These compounds can therefore serve as affinity labels. Some of these derivatives, related to the C-terminal sequence of α-melanotropin show prolonged darkening reaction, which does not influence the subsequent reaction of melanocytes with α-melanotropin. The Q(NO)-derivative of a fragment derived from the classical active site of the hormone shows, however, inhibition of the effect of α-melanotropin. It can be concluded that the latter peptide acts through the melanotropin receptor, while others, related to the C-terminal sequence of the hormone through another mechanism.


Sign in / Sign up

Export Citation Format

Share Document