Evolution of the branchial sodium outflux and its components, especially the exchange and the Na-K dependent ATPase activity during adaptation to sea water in Anguilla anguilla

1972 ◽  
Vol 43 (3) ◽  
pp. 577-591 ◽  
Author(s):  
M. Bornancin ◽  
G. De Renzis
1997 ◽  
Vol 18 (1) ◽  
pp. 67-76 ◽  
Author(s):  
S Marsigliante ◽  
A Muscella ◽  
G P Vinson ◽  
C Storelli

ABSTRACT Immunocytochemistry of paraffin-embedded and cryostat sections of eel (Anguilla anguilla) gill showed that angiotensin II receptors (Ang II-R) were present in chloride cells, uniformly distributed in the cytoplasm and on surface membranes. Computerised image analysis of these preparations showed that gills from sea water (SW)-adapted animals had a significantly (3-fold) higher Ang II-R concentration compared with freshwater (FW)-adapted eel gills. Isoelectric focusing gel electrophoresis revealed two Ang II-R isoforms with pI 6·5 and 6·6 that were differentially modulated by environmental salinity: they were equally abundant in SW while in FW the pI 6·6/pI 6·5 ratio was 1·66. Using catalytic cytochemistry with image analysis, gill chloride cell membrane Na+/K+ATPase activity was shown to increase 4-fold in response to SW adaptation. Additionally, perfusion of gills for 30 min with 0·1, 10 or with 100 nM Ang II provoked a dose-dependent increment in Na+/K+ATPase activity in FW, and a biphasic response in SW gills in which activity was significantly increased at low Ang II concentrations but was reduced to basal values at 100 nM. The data suggest that adaptation to sea water significantly increases Ang II-R concentration in the chloride cell and, together with the effects of Ang II on Na+/K+ATPase activity, suggest a role for this hormone in gill NaCl retention. The different responses of Na+/K+ATPase to Ang II stimulation in FW and SW may be attributed to the presence of two receptor subtypes that are differently modulated by salinity and that have opposing effects on Na+/K+ATPase.


2021 ◽  
Vol 701 ◽  
pp. 108786
Author(s):  
Deepali Gupta ◽  
Pragya Tiwari ◽  
Md Anzarul Haque ◽  
Ekta Sachdeva ◽  
Md Imtaiyaz Hassan ◽  
...  

Biochimie ◽  
1981 ◽  
Vol 63 (1) ◽  
pp. 37-43 ◽  
Author(s):  
R. Naon ◽  
M. Bornancin ◽  
G. De Renzis

1982 ◽  
Vol 202 (3) ◽  
pp. 661-665 ◽  
Author(s):  
D G Clark ◽  
M Brinkman ◽  
O H Filsell ◽  
S J Lewis ◽  
M N Berry

(Na+ + K+)-dependent ATPase activity, heat production and oxygen consumption were increased by 59%, 62% and 75% respectively in hepatocytes from tri-iodothyronine-treated rats. Ouabain at concentrations of 1 and 10 mM decreased oxygen uptake by 2-8% in hepatocytes from euthyroid rats and by 5-15% in hepatocytes from hyperthyroid animals. Heat output was decreased by 4-9% with the glycoside in isolated liver parenchymal cells from the control animals and by 11% in the cells from the tri-iodothyronine-treated animals. These results do not support the hypothesis that hepatic (Na+ + K+)-ATPase plays a major role in increased heat production in hepatocytes from hyperthyroid rats.


Sign in / Sign up

Export Citation Format

Share Document