Increased intestinal iron absorption in rats with normal hepatic iron stores. Kinetic aspects of the adaptative response to parenteral iron repletion in dietary iron deficiency

1990 ◽  
Vol 1033 (3) ◽  
pp. 277-281 ◽  
Author(s):  
Klaus Schümann ◽  
Bernd Elsenhans ◽  
Cyrus Ehtechami ◽  
Wolfgang Forth
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3578-3578
Author(s):  
Richard S. Ajioka ◽  
Ryan R. Gillespie ◽  
James P. Kushner

Abstract Dietary iron absorption by enterocytes is mediated by a ferrous transporter (DMT1) and possibly a ferric reductase (Cbyrd1). The role of Cbyrd1 is uncertain, as a knockout mouse has no defect in absorption (Gunshin et al. Blood, 2005, June 16, Epub). Transfer of iron to plasma is mediated by ferroportin (FPN). FPN’s residence on the basolateral membrane is regulated by hepcidin (Nemeth et al. Science 2004, 306:2090–3). Iron absorption responds to erythropoiesis, hypoxia and iron stores. A dietary iron content of 120 mg/kg consumed will maintain hepatic iron stores near that of mice found in the wild. Mice will grow and breed given diets containing 35 mg/kg. Commercial mouse chow iron content ranges from 200–350 mg/kg. We studied the effects of diets containing 2, 35, 120, 350 and 2000 mg iron/kg on iron absorption, liver and spleen iron content and transcriptional levels of DMT1, FPN and hepcidin in A/J mice. Mice were weaned at 3 weeks of age and groups of 8 animals were placed on one of the 5 diets for 4 weeks. No differences between groups were noted in hematocrit, hemoglobin and MCV. Mean hepatic iron content was 52.7 ±3.7 ug/g (wet wt) in mice fed the 2 mg/kg diet. Mean hepatic iron content was 560 ±23.7 ug/g in mice fed the 2000 mg/kg diet. There was no difference in hepatic iron content in mice fed intermediate iron diets (35–350 mg/kg). Mean hepatic iron concentration in these groups was 110 ±3 ug/g. Mean spleen iron content was 132 ±12.2 ug/g (wet wt) in mice maintained on 2 mg/kg. Mean spleen iron content was 598 ±49 ug/g in mice fed the 2000 mg/kg diet. There was no difference in spleen iron content in mice maintained on intermediate iron diets (mean 359 ±10 ug/g). These data indicate that mice maintain constant levels of hepatic and splenic iron over a ten-fold range in dietary iron content. Iron absorption was measured as percent of a measured dose of 59Fe (5 ug total) remaining in the carcass (minus the GI tract) 24 h after administration by gavage. Absorption was inversely proportional to dietary iron content. Mean absorption was 86% ±4 in the group on the 2 mg/kg diet, 42% ±3 on the 35 mg/kg diet, 26% ±7 on the 120 mg/kg diet, 19% ±4 on the 350 mg/kg diet and 6% ±1 on the 2000 mg/kg diet. Transcript levels of hepcidin, DMT1 and FPN were measured by real-time PCR and normalized to beta actin mRNA. Liver hepcidin expression was 20-fold greater in mice on the 2000 mg/kg diet than in mice on the 2 mg/kg diet (3900 ±1021 copies/actin copy vs. 198 ±47). Hepcidin expression did not differ in mice on intermediate diets (745 ±147 copies). Enterocytes were isolated from everted gut explants by elution in EDTA. Transcript levels of enterocyte DMT1 and FPN were 4566 ±SEM and 236 ±SEM copies respectively in mice on the 2 mg/kg diet. No detectable transcripts were found in mice on the 2000 mg/kg diet. Enterocyte transcript levels for DMT1 and FPN were no different in groups on intermediate iron diets (17 ±2 copies and 20 ±9 copies respectively). These data indicate that tissue iron content, hepcidin, DMT1 and FPN remain constant over a ten-fold range in dietary iron and only vary at extremes, while iron absorption is inversely proportional to dietary iron. The data also suggest that dietary iron, within defined limits, regulates iron absorption by a mechanism intrinsic to the enterocyte.


2008 ◽  
Vol 134 (4) ◽  
pp. A-147
Author(s):  
Deepak Darshan ◽  
David M. Frazer ◽  
Sarah J. Wilkins ◽  
Gregory J. Anderson

Blood ◽  
1963 ◽  
Vol 22 (4) ◽  
pp. 406-415 ◽  
Author(s):  
MARCEL E. CONRAD ◽  
WILLIAM H. CROSBY ◽  
Betty Merrill

Abstract Radioautographic studies provide evidence to support a concept of the mechanism whereby the small intestine controls absorption of iron. Three different states of the body’s iron stores have been considered in this regard: iron excess, iron deficiency and normal iron repletion. As the columnar epithelial cells of the duodenal villi are formed they incorporate a portion of intrinsic iron from the body’s iron store, the amount depending upon the body’s requirement for new iron. It is predicated that with iron excess the iron-receptor mechanism in these cells is saturated with intrinsic iron; this then prevents the cell from accepting dietary iron. In the normal state of iron repletion the receptor mechanism remains partly unsaturated, allowing small amounts of dietary iron to enter the cell. Part of this proceeds into the body to satisfy any metabolic requirement for iron. Part is retained in the mucosal epithelial cells to complete the saturation of the iron-receptor mechanism. This bound iron is subsequently lost when the epithelial cells are sloughed at the end of their life cycle. In iron deficiency it is postulated that the receptor system is inactive or diminished so that entry of dietary iron into the body is relatively uninhibited.


2000 ◽  
Vol 20 (10) ◽  
pp. 1457-1465
Author(s):  
Toshio Mikami ◽  
Sanae Hisayasu ◽  
Yuki Ikeda-More ◽  
Yoshio Yoshino

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-23-SCI-23
Author(s):  
Carole Peyssonnaux

Abstract Abstract SCI-23 As the human body cannot excrete excess iron, its absorption needs to be finely regulated at the intestinal level. Ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) by brush border ferric reductases, including duodenal cytochrome b (DCYTB), before being transported across the apical membrane by divalent metal transporter 1 (DMT1), which is the principal iron importer. Depending on body iron requirements, iron can be either stored bound to ferritin or exported across the basolateral enterocyte membrane into the plasma by the sole iron exporter ferroportin (FPN). Iron absorption responds to systemic signals reflecting body iron requirements and local signals in the enterocyte. At the systemic level, hepcidin is the key circulating peptide hormone maintaining iron homeostasis. Hepcidin controls plasma iron concentration by inhibiting intestinal iron absorption and iron recycling by macrophages. Hepcidin acts by inhibiting cellular iron efflux through binding to and inducing the degradation of FPN. Hepcidin transcription is upregulated by iron repletion and downregulated by iron deficiency, ineffective erythropoiesis, and hypoxia. Hypoxia-inducible factors HIF-1 and HIF-2 are heterodimeric transcriptional factors and central mediators of cellular and systemic adaptation to hypoxia. In the presence of oxygen, the HIF-α subunit is targeted to the proteasome, while in hypoxia (or iron deficiency), HIF-α is stabilized and induces the transcription of target genes. We hypothesized that HIFs, stabilized in the hypoxic intestinal epithelium, may also play critical local roles in regulating intestinal iron absorption. We generated conditional knockout mice that lacked either Hif1a or Hif2a specifically in the intestinal epithelium and found that HIF-1α was not necessary for iron absorption, whereas HIF-2α played a crucial role in maintaining iron balance in the organism by directly regulating the transcription of the genes encoding DMT1 and DCYTB. Specific deletion of Hif2a led to a decrease in serum and liver iron levels. Alterations in HIF-2 at the intestinal level can override systemic regulation via hepcidin. Interestingly, we further demonstrated that HIF-2α contributes to iron hyperabsorption in a genetic mouse model of hereditary hemochromatosis (HH). HH is a genetic disorder characterized by abnormally low hepcidin expression and excessive iron accumulation in the liver and parenchyma. These findings suggest a prominent role of HIF-2 in the physiopathological regulation of intestinal iron absorption and may provide new therapeutic perspectives for the treatment of anemias and iron overload-associated disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3185-3192 ◽  
Author(s):  
K.B. Raja ◽  
D.J. Pountney ◽  
R.J. Simpson ◽  
T.J. Peters

The hypotransferrinemic mouse (trf hpx) is a mutant strain exhibiting transferrin deficiency, marked anemia, hyperabsorption of iron, and elevated hepatic iron stores. We set out to investigate the relative roles of anemia and of transferrin in the malregulation of intestinal iron absorption in these animals. Transfusion of erythrocytes obtained from littermate controls increased hemoglobin levels and reduced reticulocyte counts in recipient animals. Although mucosal to carcass 59Fe transfer was reduced, total duodenal iron uptake was not significantly affected. Iron absorption in homozygotes, in contrast to littermate controls, was not reduced by hyperoxia. Mouse transferrin injections, in the short term, increased delivery of iron to the marrow and raised hemoglobin levels. Although mucosal transfer and total iron uptake were reduced at the higher transferrin doses, total uptake was still higher than in controls. Daily injections of mouse/human transferrin for 3 weeks from weaning, normalized hemoglobin values, and markedly reduced liver iron and intestinal iron absorption values in trf hpxanimals. When such daily-injected mice were left for a week to allow transferrin clearance, iron absorption values were significantly enhanced; hemoglobin or hepatic iron levels were, however, not significantly altered. These data indicate that hyperabsorption of iron in trf hpx mice is not solely because of the anemia; transferrin levels per se do affect iron absorption, possibly via a direct effect on the intestinal mucosa.


Author(s):  
Ganesh N. Dakhle ◽  
Mrunalini V. Kalikar ◽  
Rujuta P. Fuke ◽  
Anisha S. Parmarthi ◽  
Mrunalini K. Chokhandre

Background: Postpartum anaemia often leads to multiple clinical complications in mother as well as infant and iron supplementation with parenteral iron is the preferred treatment modality. The present study was planned to compare the efficacy and tolerability of IV iron sucrose and IV ferric carboxymaltose in treatment of postpartum iron deficiency anaemia.Methods: This randomized, parallel, open label, prospective 4-weeks study was conducted from June 2019 to December 2020 in women with postpartum anaemia admitted to obstetrics and gynaecology inpatient department of a tertiary care hospital. Women with postpartum iron deficiency anaemia (N=60) were randomly divided into two groups; receiving Injection iron sucrose (N=30, maximum dose 500 mg) or Injection ferric carboxymaltose (N=30, maximum dose 500 mg). Change in haemoglobin and serum ferritin levels from baseline to the end of 2 and 4 weeks of treatment were evaluated.Results: The results showed early, sustained and significant increase in the haemoglobin levels in both the groups. However, the difference was not significant between groups (p=0.2). Evaluation of replenishment of iron stores (serum ferritin) showed improvement in both the groups, however in FCM group the rise was found to be significant (p<0.05).Conclusions: FCM in a lower dose of 500mg was found to be safe and effective in significantly improving haemoglobin concentration as well as in replenishing iron stores in patients with postpartum anaemia.


Blood ◽  
2022 ◽  
Author(s):  
Nupur K Das ◽  
Chesta Jain ◽  
Amanda D. Sankar ◽  
Andrew J Schwartz ◽  
Naiara Santana-Codina ◽  
...  

Intestinal iron absorption is activated during increased systemic iron demand. The best-studied example is iron-deficiency anemia, which increases intestinal iron absorption. Interestingly, the intestinal response to anemia is very similar to that of iron overload disorders, as both the conditions activate a transcriptional program that leads to a hyperabsorption of iron via the transcription factor hypoxia-inducible factor (HIF)2a. However, pathways to selectively target intestinal-mediated iron overload remain unknown. Nuclear receptor co-activator 4 (NCOA4) is a critical cargo receptor for autophagic breakdown of ferritin (FTN) and subsequent release of iron, in a process termed ferritinophagy. Our work demonstrates that NCOA4-mediated intestinal ferritinophagy is integrated to systemic iron demand via HIF2a. To demonstrate the importance of intestinal HIF2a/ferritinophagy axis in systemic iron homeostasis, whole body and intestine-specific NCOA4-null mouse lines were generated and assessed. These analyses revealed that the intestinal and systemic response to iron deficiency was not altered following disruption of intestinal NCOA4. However, in a mouse model of hemochromatosis, ablation of intestinal NCOA4 was protective against iron overload. Therefore, NCOA4 can be selectively targeted for the management of iron overload disorders without disrupting the physiological processes involved in the response to systemic iron deficiency.


Sign in / Sign up

Export Citation Format

Share Document