Finite-range DWBA analysis of 7Li(p, α)4He reaction at astrophysically relevant energies

1995 ◽  
Vol 582 (1-2) ◽  
pp. 270-282 ◽  
Author(s):  
Yoshiki Yamashita
Keyword(s):  
1971 ◽  
Vol 36 (1) ◽  
pp. 18-20 ◽  
Author(s):  
J.-L. Perrenoud ◽  
R.M. Devries

1993 ◽  
Vol 90 (6) ◽  
pp. 1303-1310 ◽  
Author(s):  
Y. Yamashita ◽  
Y. Kudo

1972 ◽  
Vol 178 (2) ◽  
pp. 424-436 ◽  
Author(s):  
R.M. Devries ◽  
Jean-Luc Perrenoud ◽  
I. Slaus ◽  
J.W. Sunier
Keyword(s):  

1980 ◽  
Vol 63 (5) ◽  
pp. 1608-1619 ◽  
Author(s):  
K. Kobayashi ◽  
T. Une

1978 ◽  
Vol 39 (11) ◽  
pp. 158-160 ◽  
Author(s):  
J. Meyer ◽  
R.S. Nahabetian ◽  
E. Elbaz
Keyword(s):  

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
C. Gonzalez-Boquera ◽  
M. Centelles ◽  
X. Viñas ◽  
L. M. Robledo
Keyword(s):  

1996 ◽  
Vol 28 (2) ◽  
pp. 346-355 ◽  
Author(s):  
A. J. Baddeley ◽  
M. N. M. Van Lieshout ◽  
J. Møller

We show that a Poisson cluster point process is a nearest-neighbour Markov point process [2] if the clusters have uniformly bounded diameter. It is typically not a finite-range Markov point process in the sense of Ripley and Kelly [12]. Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour Markov point process, the resulting cluster process is also nearest-neighbour Markov, provided all clusters are non-empty. In particular, the nearest-neighbour Markov property is preserved when points of the process are independently randomly translated, but not when they are randomly thinned.


Sign in / Sign up

Export Citation Format

Share Document