The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points

1990 ◽  
Vol 3 (3) ◽  
pp. 315-329
Author(s):  
W GAUTSCHI ◽  
S LI
2019 ◽  
Vol 13 (2) ◽  
pp. 463-477
Author(s):  
Aleksandar Pejcev ◽  
Ljubica Mihic

Starting from the explicit expression of the corresponding kernels, derived by Gautschi and Li (W. Gautschi, S. Li: The remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadrature rules with multiple end points, J. Comput. Appl. Math. 33 (1990) 315{329), we determine the exact dimensions of the minimal ellipses on which the modulus of the kernel starts to behave in the described way. The effective error bounds for Gauss- Radau and Gauss-Lobatto quadrature formulas with double end point(s) are derived. The comparisons are made with the actual errors.


Filomat ◽  
2016 ◽  
Vol 30 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Ljubica Mihic ◽  
Aleksandar Pejcev ◽  
Miodrag Spalevic

For analytic functions the remainder terms of quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points -+1, for Gauss-Lobatto quadrature formula with multiple end points with Chebyshev weight function of the third and the fourth kind. Starting from the explicit expression of the corresponding kernel, derived by Gautschi and Li, we determine the locations on the ellipses where maximum modulus of the kernel is attained. The obtained values confirm the corresponding conjectured values given by Gautschi and Li in paper [The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points, Journal of Computational and Applied Mathematics 33 (1990) 315-329.]


2002 ◽  
Vol 9 (3) ◽  
pp. 405-412
Author(s):  
C. Belingeri ◽  
B. Germano

Abstract The Radon technique is applied in order to recover a quadrature rule based on Appel polynomials and the so called Appel numbers. The relevant formula generalizes both the Euler-MacLaurin quadrature rule and a similar rule using Euler (instead of Bernoulli) numbers and even (instead of odd) derivatives of the given function at the endpoints of the considered interval. In the general case, the remainder term is expressed in terms of Appel numbers, and all derivatives appear. A numerical example is also included.


2008 ◽  
Vol 218 (2) ◽  
pp. 281-289 ◽  
Author(s):  
Gradimir V. Milovanović ◽  
Miodrag M. Spalević ◽  
Miroslav S. Pranić

Sign in / Sign up

Export Citation Format

Share Document