On the composition dependencies of self-diffusion coefficients in B2 intermetallic compounds

1993 ◽  
Vol 1 (4) ◽  
pp. 237-250 ◽  
Author(s):  
C.R. Kao ◽  
Y.A. Chang
2021 ◽  
Vol 11 (11) ◽  
pp. 5070
Author(s):  
Xesús Prieto-Blanco ◽  
Carlos Montero-Orille

In the last few years, some advances have been made in the theoretical modelling of ion exchange processes in glass. On the one hand, the equations that describe the evolution of the cation concentration were rewritten in a more rigorous manner. This was made into two theoretical frameworks. In the first one, the self-diffusion coefficients were assumed to be constant, whereas, in the second one, a more realistic cation behaviour was considered by taking into account the so-called mixed ion effect. Along with these equations, the boundary conditions for the usual ion exchange processes from molten salts, silver and copper films and metallic cathodes were accordingly established. On the other hand, the modelling of some ion exchange processes that have attracted a great deal of attention in recent years, including glass poling, electro-diffusion of multivalent metals and the formation/dissolution of silver nanoparticles, has been addressed. In such processes, the usual approximations that are made in ion exchange modelling are not always valid. An overview of the progress made and the remaining challenges in the modelling of these unique processes is provided at the end of this review.


Author(s):  
Victor P. Arkhipov ◽  
Natalia A. Kuzina ◽  
Andrei Filippov

AbstractAggregation numbers were calculated based on measurements of the self-diffusion coefficients, the effective hydrodynamic radii of micelles and aggregates of oxyethylated alkylphenols in aqueous solutions. On the assumption that the radii of spherical micelles are equal to the lengths of fully extended neonol molecules, the limiting values of aggregation numbers corresponding to spherically shaped neonol micelles were calculated. The concentration and temperature ranges under which spherical micelles of neonols are formed were determined.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4030
Author(s):  
Gengbiao Chen ◽  
Zhiwen Liu

The diffusion behavior of fluid water in nanochannels with hydroxylation of silica gel and silanization of different modified chain lengths was simulated by the equilibrium molecular dynamics method. The diffusion coefficient of fluid water was calculated by the Einstein method and the Green–Kubo method, so as to analyze the change rule between the modification degree of nanochannels and the diffusion coefficient of fluid water. The results showed that the diffusion coefficient of fluid water increased with the length of the modified chain. The average diffusion coefficient of fluid water in the hydroxylated nanochannels was 8.01% of the bulk water diffusion coefficient, and the diffusion coefficients of fluid water in the –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3 nanochannels were 44.10%, 49.72%, and 53.80% of the diffusion coefficients of bulk water, respectively. In the above four wall characteristic models, the diffusion coefficients in the z direction were smaller than those in the other directions. However, with an increase in the silylation degree, the increased self-diffusion coefficient due to the surface effect could basically offset the decreased self-diffusion coefficient owing to the scale effect. In the four nanochannels, when the local diffusion coefficient of fluid water was in the range of 8 Å close to the wall, Dz was greater than Dxy, and beyond the range of 8 Å of the wall, the Dz was smaller than Dxy.


1994 ◽  
Vol 281 ◽  
pp. 51-80 ◽  
Author(s):  
Chingyi Chang ◽  
Robert L. Powell

We study the average mobilities and long-time self-diffusion coefficients of a suspension of bimodally distributed spherical particles. Stokesian dynamics is used to calculate the particle trajectories for a monolayer of bimodal-sized spheres. Hydrodynamic forces only are considered and they are calculated using the inverse of the grand mobility matrix for far-field many-body interactions and lubrication formulae for near-field effects. We determine both the detailed microstructure (e.g. the pair-connectedness function and cluster formation) and the macroscopic properties (e.g. viscosity and self-diffusion coefficients). The flow of an ‘infinite’ suspension is simulated by considering 25, 49, 64 and 100 particles to be one ‘cell’ of a periodic array. Effects of both the size ratio and the relative fractions of the different-sized particles are examined. For the microstructures, the pair-connectedness function shows that the particles form clusters in simple shearing flow due to lubrication forces. The nearly symmetric angular structures imply the absence of normal stress differences for a suspension with purely hydrodynamic interactions between spheres. For average mobilities at infinite Péclet number, Ds0, our simulation results suggest that the reduction of Ds0 as concentration increases is directly linked to the influence of particle size distribution on the average cluster size. For long-time self-diffusion coefficients, Ds∞, we found good agreement between simulation and experiment (Leighton & Acrovos 1987 a; Phan and Leighton 1993) for monodispersed suspensions. For bimodal suspensions, the magnitude of Ds∞, and the time to reach the asymptotic diffusive behaviour depend on the cluster size formed in the system, or the viscosity of the suspension. We also consider the effect of the initial configuration by letting the spheres be both organized (size segregated) and randomly placed. We find that it takes a longer time for a suspension with an initially organized structure to achieve steady state than one with a random structure.


Sign in / Sign up

Export Citation Format

Share Document