Do Crop Rotations Improve the Adaptation of Agricultural Systems to Climate Change? A Modeling Approach to Predict the Effect of Durum Wheat-Based Rotations on Soil Organic Carbon and Nitrogen

Author(s):  
Roberta Farina ◽  
Claudia Di Bene ◽  
Chiara Piccini ◽  
Alessandro Marchetti ◽  
Antonio Troccoli ◽  
...  
ael ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 180026 ◽  
Author(s):  
B. Basso ◽  
B. Dumont ◽  
B. Maestrini ◽  
I. Shcherbak ◽  
G. P. Robertson ◽  
...  

Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 149 ◽  
Author(s):  
Amadou Maiga ◽  
Abdullah Alhameid ◽  
Shikha Singh ◽  
Atilla Polat ◽  
Jasdeep Singh ◽  
...  

Diversification within a cropping system together with no-till (NT) soil management can help to improve soil organic carbon (SOC). The present study was conducted to assess the impacts of crop diversity through crop rotations on SOC and other selected soil properties. The long-term experimental sites were located in Beresford and Brookings, South Dakota, USA. The Beresford site was initiated in 1991 (24 years) on Egan soil series (fine-silty, mixed, superactive, mesic Udic Haplustolls), whereas, the Brookings site was established in 2000 (14 years) on a Barnes clay loam soil (fine-loamy, mixed, superactive, frigid Calcic Hapludolls) under a randomised complete block design with four replications. Treatments at both sites consisted of a 2-year (corn (Zea mays L.)–soybean (Glycine max L.)), and a 4-year (corn–soybean–winter wheat (Triticum aestivum L.)–oat (Avena sativa L.)) rotation, all managed under NT soil management. Soil samples were collected in the fall of 2015 after crop harvest under the corn phase. Data showed that 4-year rotation increased SOC stock (8.3% in Brookings and 22% in Beresford) compared with that under 2-year rotation (not always significant) in the soil profile 0–60cm. Soil particulate organic matter and organic matter were always higher under 4-year rotation than under 2-year rotation at 0–5 and 5–15cm depths at both sites. Surface soil aggregate stability was improved in both locations under 4-year rotation (12% in Brookings, 4% in Beresford). Additionally, at 0–5cm depth, the 4-year rotation increased light fractions of carbon (18% in Brookings, and 32% in Beresford) compared with 2-year. Results from this study showed that the use of diverse crop rotations (4-year) for longer (>24 years) duration enhanced SOC, carbon and nitrogen fractions, and soil aggregation compared with those under corn–soybean (2-year) rotation.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Gandhiv Kafle

This paper reports the findings of a research conducted in Kankali community forest, Chitwan, Nepal, to quantify the vertical distribution of soil organic carbon (SOC) and nitrogen in 1 m soil profile depth. This community forest represents a tropical Shorea robusta-dominated community forest. It was found that the soil had 122.36 t/ha SOC and 12.74 t/ha nitrogen in 1 m soil profile in 2012, with 0.99% soil organic matter and 0.10% nitrogen concentration in average. Carbon and nitrogen ratio (C/N ratio) of the soil was found to be 9.90. Both bulk density and C/N ratio were found increasing with increase in soil depth. The SOC and nitrogen were found significantly different across different soil layers up to 1 m soil profile depth. The average pH of the forest soil was found to be 5.3. Looking into the values of stocks of SOC and nitrogen, it is concluded that Kankali community forest has played a role in global climate change mitigation by storing considerable amounts of SOC. Involvement of local community in management of tropical forest cannot be overlooked in the process of climate change mitigation.


Wetlands ◽  
2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Yu An ◽  
Yang Gao ◽  
Xiaohui Liu ◽  
Shouzheng Tong ◽  
Bo Liu ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Rodrigo Antón ◽  
Francisco Javier Arricibita ◽  
Alberto Ruiz-Sagaseta ◽  
Alberto Enrique ◽  
Isabel de Soto ◽  
...  

2021 ◽  
Author(s):  
David Emde ◽  
Kirsten Hannam ◽  
Ilka Most ◽  
Louise Nelson ◽  
Melanie Jones

Author(s):  
Ziwei Xiao ◽  
Xuehui Bai ◽  
Mingzhu Zhao ◽  
Kai Luo ◽  
Hua Zhou ◽  
...  

Abstract Shaded coffee systems can mitigate climate change by fixation of atmospheric carbon dioxide (CO2) in soil. Understanding soil organic carbon (SOC) storage and the factors influencing SOC in coffee plantations are necessary for the development of sound land management practices to prevent land degradation and minimize SOC losses. This study was conducted in the main coffee-growing regions of Yunnan; SOC concentrations and storage of shaded and unshaded coffee systems were assessed in the top 40 cm of soil. Relationships between SOC concentration and factors affecting SOC were analysed using multiple linear regression based on the forward and backward stepwise regression method. Factors analysed were soil bulk density (ρb), soil pH, total nitrogen of soil (N), mean annual temperature (MAT), mean annual moisture (MAM), mean annual precipitation (MAP) and elevations (E). Akaike's information criterion (AIC), coefficient of determination (R2), root mean square error (RMSE) and residual sum of squares (RSS) were used to describe the accuracy of multiple linear regression models. Results showed that mean SOC concentration and storage decreased significantly with depth under unshaded coffee systems. Mean SOC concentration and storage were higher in shaded than unshaded coffee systems at 20–40 cm depth. The correlations between SOC concentration and ρb, pH and N were significant. Evidence from the multiple linear regression model showed that soil bulk density (ρb), soil pH, total nitrogen of soil (N) and climatic variables had the greatest impact on soil carbon storage in the coffee system.


Sign in / Sign up

Export Citation Format

Share Document