Sea Level Change, Sea Water Intrusion, and Coastal Land Subsidence

2017 ◽  
pp. 587-656
Author(s):  
Ye Yincan et al
Ground Water ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Adrian D. Werner ◽  
Craig T. Simmons

2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Today, despite the satellite altimetry, it is possible to determine the average sea level and determine the sea level change with high accuracy. In this research, data from 1992-2017 TOPEX / Poseidon, Jason1, OSTM and Jason3 altimeter satellites in the Caspian Sea have been used. The results show that every year the average of 75 mm of the Caspian Sea water level decreases and the downward trend.


2021 ◽  
Author(s):  
Omid Memarian Sorkhabi

Abstract Today, despite the satellite altimetry, it is possible to determine the average sea level and determine the sea level change with high accuracy. In this research, data from 1992-2017 TOPEX / Poseidon, Jason1, OSTM and Jason3 altimeter satellites in the Caspian Sea have been used. The results show that every year the average of 75 mm of the Caspian Sea water level decreases and the downward trend.


Ground Water ◽  
2011 ◽  
Vol 50 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Hugo A. Loáiciga ◽  
Thomas J. Pingel ◽  
Elizabeth S. Garcia

2021 ◽  
Vol 325 ◽  
pp. 08004
Author(s):  
Salsabiila Bayu Nugrahaeni ◽  
Ignasius Loyola Setyawan Purnama ◽  
Vincentia Anindha Primacintya

Besides being able to cause land subsidence, excessive groundwater use in coastal areas can also cause to sea water intrusion. The purpose of this study is to evaluate the use of groundwater in the study area in relation to its vulnerability to sea water intrusion. Because groundwater in the study area is used for domestic, industry and livestock purposes, the water use that is taken into account is the use of water for the three sectors. The amount of water used for domestic purposes is calculated based on the population and the amount of water needed of each person per day. The amount of water use for industry is calculated based on the number of industrial employees and water usage of each employee per day. Water use for livestock is calculated based on the number of livestock and water use of each livestock per day. The results of this water usage calculation are then linked to the criteria for groundwater vulnerability to sea water intrusion and the depth of the interface. Observing the relationship between groundwater usage and the vulnerability of groundwater to sea water intrusion and the depth of its interface, Tegal Kamulyan, Cilacap and Sidakaya villages, all of which are located in South Cilacap District, need attention. The three village are classified as moderate vulnerability to sea water intrusion and shallow interface depth, but their water usage is quite high. For this reason, it is necessary to make efforts to find other water sources for domestic, industry and livestock requirement other than groundwater.


2016 ◽  
Vol 59 (5) ◽  
Author(s):  
Ines Cerenzia ◽  
Davide Putero ◽  
Flavio Bonsignore ◽  
Gaia Galassi ◽  
Marco Olivieri ◽  
...  

The regions facing the northern Adriatic Sea are particularly vulnerable to sea-level rise. Several trade ports are located there, and the area is important from social and economical viewpoints. Since tourism and cultural heritage are a significant source of income, an increase in sea-level could hinder the development of these regions. One of the longest sea-level time series in the northern Adriatic, which goes back to the late 1880s, has been recorded at Marina di Ravenna, in Emilia-Romagna region. The record is anomalous, showing a rate of increase that largely exceeds that observed in nearby stations. During the last few decades, geodetic campaigns based on geometric high precision leveling, SAR interferometry, and GPS have monitored the Ravenna area. In this work, tide gauge observations are merged with yet unpublished geodetic data, aiming at a coherent interpretation of vertical land movements. We confirm that land subsidence is the major cause of relative sea-level change at Marina di Ravenna, at least during the period allowing  for a quantitative analysis (1990-2011). The rate of absolute sea-level change (2.2±1.3 mm yr−1 during the same time period), given by the difference between the rate of relative sea-level change and the rate of subsidence, is consistent with the rate of absolute sea-level change observed by altimetry in the northern Adriatic Sea.


Sign in / Sign up

Export Citation Format

Share Document