Modal coupled instabilities of thin-walled composite plate and shell structures

Author(s):  
M. Królak ◽  
Z. Koŀkowski ◽  
M. Koteŀko
Author(s):  
Hoang Lan Ton-That ◽  
Hieu Nguyen-Van

This paper deals with numerical analyses of laminated composite plate and shell structures using a new four-node quadrilateral flat shell element, namely SQ4C, based on the first-order shear deformation theory (FSDT) and a combined strain strategy. The main notion of the combined strain strategy is based on the combination of the membrane strain and shear strain related to tying points as well as bending strain with respect to cell-based smoothed finite element method. Many desirable characteristics and the enforcement of the SQ4C element are verified and proved through various numerical examples in static, frequency and buckling analyses of laminated composite plate and shell structures. Numerical results and comparison with other reference solutions suggest that the present element is accuracy, efficiency and removal of shear and membrane locking.


2021 ◽  
Vol 98 (6) ◽  
pp. 63-72
Author(s):  
GIL-OULBE MATHIEU ◽  

After a period of relative calm in the construction and design of thin-walled large-span shells and network multilayer shell structures, which, according to the world's leading architects, began in the 1980 s, the time has come for the expanded use of spatial structures in the architecture of public and industrial buildings. Less commonly, shells are used in small-sized housing construction: ecological villages, noospheric and bionic architecture. The entire 20th century did not stop research on the development of analytical and numerical methods for analyzing shells for strength and stability, for the creation of new building materials. Geometers have created and studied more than 600 analytical surfaces that can be mistaken for the mid-surfaces of civil and mechanical engineering shells. As a result, by the beginning of the 21st century, architects and engineers had all the necessary tools to continue the traditions of the "golden age of shells". The analysis of problems with the use of new forms in parametric architecture, carried out in the article, showed that more than ten classes of surfaces from their classification have not yet found application in architecture and mechanical engineering. It is assumed that the number of applied classes of surfaces will not expand, and new ideas for the shaping of shells will be based on the use of already well-known surfaces, namely, surfaces of revolution, transfer, umbrella, minimal, ruled and wavy surfaces. Mainly, shell structures will be designed taking into account environmental, energy-saving requirements and transforming structures.


Sign in / Sign up

Export Citation Format

Share Document