Determination of mitophagy by electron microscope

Author(s):  
Zhiyu Li ◽  
Qi Wu ◽  
Le Liu ◽  
Si Sun ◽  
Shengrong Sun ◽  
...  
Keyword(s):  
Author(s):  
J. C. Ingram ◽  
P. R. Strutt ◽  
Wen-Shian Tzeng

The invisibility criterion which is the standard technique for determining the nature of dislocations seen in the electron microscope can at times lead to erroneous results or at best cause confusion in many cases since the dislocation can still show a residual image if the term is non-zero, or if the edge and screw displacements are anisotropically coupled, or if the dislocation has a mixed character. The symmetry criterion discussed below can be used in conjunction with and in some cases supersede the invisibility criterion for obtaining a valid determination of the nature of the dislocation.The symmetry criterion is based upon the well-known fact that a dislocation, because of the symmetric nature of its displacement field, can show a symmetric image when the dislocation is correctly oriented with respect to the electron beam.


Author(s):  
T. A. Welton

An ultimate design goal for an improved electron microscope, aimed at biological applications, is the determination of the structure of complex bio-molecules. As a prototype of this class of problems, we propose to examine the possibility of reading DNA sequence by an imaginable instrument design. This problem ideally combines absolute importance and relative simplicity, in as much as the problem of enzyme structure seems to be a much more difficult one.The proposed technique involves the deposition on a thin graphite lamina of intact double helical DNA rods. If the structure can be maintained under vacuum conditions, we can then make use of the high degree of order to greatly reduce the work involved in discriminating between the four possible purine-pyrimidine arrangements in each base plane. The phosphorus atoms of the back bone form in projection (the helical axis being necessarily parallel to the substrate surface) two intertwined sinusoids. If these phosphorus atoms have been located up to a certain point on the molecule, we have available excellent information on the orientation of the base plane at that point, and can then locate in projection the key atoms for discrimination of the four alternatives.


2013 ◽  
Vol 19 (S5) ◽  
pp. 58-61 ◽  
Author(s):  
Mino Yang ◽  
Jun-Ho Lee ◽  
Hee-Goo Kim ◽  
Euna Kim ◽  
Young-Nam Kwon ◽  
...  

AbstractDistribution of wax in laser printer toner was observed using an ultra-high-voltage (UHV) and a medium-voltage transmission electron microscope (TEM). As the radius of the wax spans a hundred to greater than a thousand nanometers, its three-dimensional recognition via TEM requires large depth of focus (DOF) for a volumetric specimen. A tomogram with a series of the captured images would allow the determination of their spatial distribution. In this study, bright-field (BF) images acquired with UHV-TEM at a high tilt angle prevented the construction of the tomogram. Conversely, the Z-contrast images acquired by the medium-voltage TEM produced a successful tomogram. The spatial resolution for both is discussed, illustrating that the image degradation was primarily caused by beam divergence of the Z-contrast image and the combination of DOF and chromatic aberration of the BF image from the UHV-TEM.


2013 ◽  
Vol 12 (4) ◽  
pp. 095-105
Author(s):  
Beata Klimek

One of the main tasks in the study of historic buildings is the need to identify the original materials and extensions, which often have historic character. The next task concerns the determination of the composition and structure of the historical, diagnosis technique to develop original paint. The article presents the preliminary results of paintings. Methods were used with the scanning electron microscope was equipped with an energy dispersive X-ray spectrometer (SEM-EDS).


1983 ◽  
Vol 96 (1) ◽  
pp. 293-303 ◽  
Author(s):  
Erwin Knapek ◽  
Guy Lefranc ◽  
Wolfgang v. Gentzkow ◽  
Isolde Dietrich ◽  
Helmut Formanek

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 941 ◽  
Author(s):  
Rahadian Zainul ◽  
Nurashikin Abd Azis ◽  
Illyas Md Isa ◽  
Norhayati Hashim ◽  
Mohamad Syahrizal Ahmad ◽  
...  

This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10−8–7.0 × 10−7 M (R2 = 0.9876), 1.0 × 10−6–1.0 × 10−5 M (R2 = 0.9836) and 3.0 × 10−5–3.0 × 10−4 M (R2 = 0.9827) with a limit of detection of 4.4 × 10−9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.


2019 ◽  
Vol 2 (4) ◽  
pp. 87 ◽  
Author(s):  
Isa Doverbratt ◽  
Helena Alexanderson

The grain transfer protocol presents a step-by-step guide on how to successfully transfer positioned grains from a single-grain luminescence disc to a scanning electron microscope (SEM) specimen stub and how to transport them between laboratories. Single-grain luminescence analysis allows the determination of luminescence characteristics for individual sand-sized grains. By combining such luminescence data with other grain properties such as geochemical composition, shape, or structure also at single-grain level, it is possible to investigate factors controlling luminescence signals or study other material properties. The non-luminescence properties are typically measured in another instrument; thus, grains need to be transferred between machines and sample holders, and sometimes also between laboratories. It is then important that the position of each grain is known and stable so that the properties from the same grain are compared. By providing an easily observable orientation marker on the specimen stub, the hundred numbered grains from the single-grain disc can be transferred and later identified when analyzed in the SEM.


2000 ◽  
Vol 6 (4) ◽  
pp. 380-387 ◽  
Author(s):  
Christopher John Edgcombe ◽  
Ugo Valdrè

AbstractAn overview and new results are presented of the investigations carried out in the last 5 years on nano-sized tips by means of electron microscopy, an electron optical bench, and computation. Tungsten and, in particular, carbon nano-tips prepared by carbon contamination in a scanning electron microscope, were studied for applications as field-emission electron sources. Several features of their use are described and the results concerning the determination of some of their basic properties are reported.


Sign in / Sign up

Export Citation Format

Share Document