Expression of GP82 and GP90 surface glycoprotein genes of Trypanosoma cruzi during in vivo metacyclogenesis in the insect vector Rhodnius prolixus

Acta Tropica ◽  
2008 ◽  
Vol 105 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Esteban M. Cordero ◽  
Luciana G. Gentil ◽  
Gladys Crisante ◽  
José Luis Ramírez ◽  
Nobuko Yoshida ◽  
...  
1993 ◽  
Vol 106 (4) ◽  
pp. 1023-1033 ◽  
Author(s):  
A.R. de Jesus ◽  
R. Cooper ◽  
M. Espinosa ◽  
J.E. Gomes ◽  
E.S. Garcia ◽  
...  

We have explored the biological function of a surface glycoprotein (GP72) of Trypanosoma cruzi by studying a null mutant parasite, generated by targeted gene deletion. GP72 deletion affected parasite morphology in several stages of the life cycle. Insect midgut (epimastigote) forms had a detached flagellum (apomastigote) in the null mutant. The abnormal flagellar phenotype persisted during development of the infective (metacyclic) forms but there was no impairment in the acquisition of complement resistance, sialidase expression or cell infectivity. The GP72 null mutant could efficiently infect and proliferate in mouse macrophages and non-phagocytic L6E9 cells. The mammalian stages of the life cycle also showed major morphological abnormalities. During early subcultures in L6E9 cells, few extracellular fully flagellated forms, expressing markers characteristic of trypomastigotes, were seen. The extracellular population consisted almost exclusively of rounded forms with short flagella (micromastigote), which expressed an amastigote-specific surface marker and no sialidase. The propagation of the parasite was not affected, despite the apparent lack of the trypomastigote forms, which are thought to be primarily responsible for cell invasion. After some subcultures, the extracellular population changed to about equal numbers of micromastigotes and a range of flagellated forms that still did not include true trypomastigotes. Instead, the kinetoplast remained close to the nucleus and the flagellum emerged from the middle of the cell (mesomastigote). Half of the flagellum adhered to the cell body and the remainder was free at the anterior end. In Triatoma infestans, the survival of the mutant was dramatically reduced, suggesting that either GP72 itself, or the altered properties of the flagellum, were critical for establishment in the insect vector.


Parasitology ◽  
2012 ◽  
Vol 139 (6) ◽  
pp. 735-743 ◽  
Author(s):  
F. O. R. OLIVEIRA ◽  
C. R. ALVES ◽  
F. SOUZA-SILVA ◽  
C. M. CALVET ◽  
L. M. C. CÔRTES ◽  
...  

SUMMARYHeparin-binding proteins (HBPs) have been demonstrated in both infective forms of Trypanosoma cruzi and are involved in the recognition and invasion of mammalian cells. In this study, we evaluated the potential biological function of these proteins during the parasite-vector interaction. HBPs, with molecular masses of 65·8 kDa and 59 kDa, were isolated from epimastigotes by heparin affinity chromatography and identified by biotin-conjugated sulfated glycosaminoglycans (GAGs). Surface plasmon resonance biosensor analysis demonstrated stable receptor-ligand binding based on the association and dissociation values. Pre-incubation of epimastigotes with GAGs led to an inhibition of parasite binding to immobilized heparin. Competition assays were performed to evaluate the role of the HBP-GAG interaction in the recognition and adhesion of epimastigotes to midgut epithelial cells of Rhodnius prolixus. Epithelial cells pre-incubated with HBPs yielded a 3·8-fold inhibition in the adhesion of epimastigotes. The pre-treatment of epimastigotes with heparin, heparan sulfate and chondroitin sulfate significantly inhibited parasite adhesion to midgut epithelial cells, which was confirmed by scanning electron microscopy. We provide evidence that heparin-binding proteins are found on the surface of T. cruzi epimastigotes and demonstrate their key role in the recognition of sulfated GAGs on the surface of midgut epithelial cells of the insect vector.


1995 ◽  
Vol 81 (3) ◽  
pp. 255-261 ◽  
Author(s):  
E.S. Garcia ◽  
M.S. Gonzalez ◽  
P. Deazambuja ◽  
F.E. Baralle ◽  
D. Fraidenraich ◽  
...  

1999 ◽  
Vol 85 (3) ◽  
pp. 184-187 ◽  
Author(s):  
Marise M. O. Cabral ◽  
Patrícia Azambuja ◽  
Otto R. Gottlieb ◽  
Eloi S. Garcia

2005 ◽  
Vol 77 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Patrícia Azambuja ◽  
Norman A. Ratcliffe ◽  
Eloi S. Garcia

This review outlines aspects on the developmental stages of Trypanosoma cruzi and Trypanosoma rangeli in the invertebrate host, Rhodnius prolixus. Special attention is given to the interactions of these parasites with gut and hemolymph molecules and the effects of the organization of midgut epithelial cells on the parasite development. The vector insect's permissiveness to T. cruzi, which develops in the vector gut, largely depends on the host nutritional state, the parasite strain and the molecular interactions with trypanolytic compounds, lectins and resident bacteria in the gut. T. rangeli invades the hemocoel and once in the hemolymph, can be recognized and activates the defense system of its insect vector, i.e., the prophenoloxidase system, phagocytosis, hemocyte microaggregation, superoxide and nitric oxide activity and the eicosanoid biosynthesis pathway. Taken together, these findings not only provide a better understanding of the interactions parasite - insect vector, but also offer new insights into basic physiological processes involved in the parasites transmission.


Parasitology ◽  
2011 ◽  
Vol 138 (14) ◽  
pp. 1870-1877 ◽  
Author(s):  
MARCELO S. GONZALEZ ◽  
LUIZ-CLAUDIO F. SILVA ◽  
J. M. ALBUQUERQUE-CUNHA ◽  
NADIR F. S. NOGUEIRA ◽  
DÉBORA P. MATTOS ◽  
...  

SUMMARYIn the present study, we investigated the involvement of sulfated glycosaminoglycans in both the in vivo development and adhesion of T. cruzi epimastigotes to the luminal surface of the digestive tract of the insect vector, Rhodnius prolixus. Pre-incubation of T. cruzi, Dm 28c epimastigotes with heparin, chondroitin 4-sulfate, chondroitin 6-sulfate or protamine chloridrate inhibited in vitro attachment of parasites to the insect midgut. Enzymatic removal of heparan sulfate moieties by heparinase I or of chondroitin sulfate moieties by chondroitinase AC from the insect posterior midgut abolished epimastigote attachment in vitro. These treatments also reduced the labelling of anionic sites exposed at the luminal surface of the perimicrovillar membranes in the triatomine midgut epithelial cells. Inclusion of chondroitin 4-sulfate or chondroitin 6-sulfate and to a lesser extent, heparin, in the T. cruzi-infected bloodmeal inhibited the establishment of parasites in R. prolixus. These observations indicate that sulfated glycosaminoglycans are one of the determinants for both adhesion of the T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine and the parasite infection in the insect vector, R. prolixus.


2010 ◽  
Vol 9 (6) ◽  
pp. 934-942 ◽  
Author(s):  
Brian T. Emmer ◽  
Melvin D. Daniels ◽  
Joann M. Taylor ◽  
Conrad L. Epting ◽  
David M. Engman

ABSTRACT African trypanosomes express a family of dually acylated, EF-hand calcium-binding proteins called the calflagins. These proteins associate with lipid raft microdomains in the flagellar membrane, where they putatively function as calcium signaling proteins. Here we show that these proteins bind calcium with high affinity and that their expression is regulated during the life cycle stage of the parasite, with protein levels approximately 10-fold higher in the mammalian bloodstream form than in the insect vector procyclic stage. We also demonstrate a role for the calflagins in mammalian infection, as inhibition of the entire calflagin family by RNA interference dramatically increased host survival and attenuated parasitemia in a mouse model of sleeping sickness. In contrast to infection with parental wild-type parasites, which demonstrated an unremitting parasitemia and death within 6 to 10 days, infection with calflagin-depleted parasites demonstrated prolonged survival associated with a sudden decrease in parasitemia at approximately 8 days postinfection. Subsequent relapsing and remitting waves of parasitemia thereafter were associated with alternate expression of the variant surface glycoprotein, suggesting that initial clearance was antigen specific. Interestingly, despite the notable in vivo phenotype and flagellar localization of the calflagins, in vitro analysis of the calflagin-deficient parasites demonstrated normal proliferation, flagellar motility, and morphology. Further analysis of the kinetics of surface antibody clearance also did not demonstrate a deficit in the calflagin-deficient parasites; thus, the molecular basis for the altered course of infection is independent of an effect on parasite cell cycle progression, motility, or degradation of surface-bound antibodies.


Parasitology ◽  
2019 ◽  
Vol 146 (8) ◽  
pp. 1075-1082 ◽  
Author(s):  
Karina M. Rebello ◽  
Livia A. Uehara ◽  
Vítor Ennes-Vidal ◽  
Aline S. Garcia-Gomes ◽  
Constança Britto ◽  
...  

AbstractTrypanosoma cruzi is the causative agent of Chagas disease, a vector-borne disease. The parasite molecules involved in vector interaction have been little investigated. Metallopeptidases and gp63 molecules have been implicated in parasite adhesion of several trypanosomatids to the insect midgut. Although gp63 homologues are highly expanded in the T. cruzi genome, and are implicated in parasite–mammalian host interaction, its role in the insect vector has never been explored. Here, we showed that divalent metal chelators or anti-Tcgp63-I antibodies impaired T. cruzi adhesion to Rhodnius prolixus midgut. Parasites isolated after insect colonization presented a drastic enhancement in the expression of Tcgp63-I. These data highlight, for the first time, that Tcgp63-I and Zn-dependent enzymes contribute to the interaction of T. cruzi with the insect vector.


2006 ◽  
Vol 114 (4) ◽  
pp. 297-304 ◽  
Author(s):  
M.S. Gonzalez ◽  
A. Hamedi ◽  
J.M. Albuquerque-Cunha ◽  
N.F.S. Nogueira ◽  
W. De Souza ◽  
...  

Parasitology ◽  
2016 ◽  
Vol 143 (4) ◽  
pp. 434-443 ◽  
Author(s):  
ROBERTA CARVALHO FERREIRA ◽  
RAFAEL LUIS KESSLER ◽  
MARCELO GUSTAVO LORENZO ◽  
RAFAELA MAGALHÃES MACEDO PAIM ◽  
LUCIANA DE LIMA FERREIRA ◽  
...  

SUMMARYTrypanosoma cruzi, the etiological agent of Chagas disease, is ingested by triatomines during their bloodmeal on an infected mammal. Aiming to investigate the development and differentiation of T. cruzi inside the intestinal tract of Rhodnius prolixus at the beginning of infection we fed insects with cultured epimastigotes and blood trypomastigotes from infected mice to determine the amount of recovered parasites after ingestion. Approximately 20% of the ingested parasites was found in the insect anterior midgut (AM) 3 h after feeding. Interestingly, a significant reduction (80%) in the numbers of trypomastigotes was observed after 24 h of infection suggesting that parasites were killed in the AM. Moreover, few parasites were found in that intestinal portion after 96 h of infection. The evaluation of the numbers of parasites in the posterior midgut (PM) at the same periods showed a reduced parasite load, indicating that parasites were not moving from the AM. Additionally, incubation of blood trypomastigotes with extracts from R. prolixus AMs revealed that components of this tissue could induce significant death of T. cruzi. Finally, we observed that differentiation from trypomastigotes to epimastigotes is not completed in the AM; instead we suggest that trypomastigotes change to intermediary forms before their migration to the PM, where differentiation to epimastigotes takes place. The present work clarifies controversial points concerning T. cruzi development in insect vector, showing that parasite suffers a drastic decrease in population size before epimastigonesis accomplishment in PM.


Sign in / Sign up

Export Citation Format

Share Document