Fluorescent non-porous silica nanoparticles for long-term cell monitoring: Cytotoxicity and particle functionality

2013 ◽  
Vol 9 (11) ◽  
pp. 9183-9193 ◽  
Author(s):  
Stefaan J. Soenen ◽  
Bella Manshian ◽  
Shareen H. Doak ◽  
Stefaan C. De Smedt ◽  
Kevin Braeckmans
Author(s):  
Zongyu Wang ◽  
Hao Chen ◽  
Yangyang Wang ◽  
Jihua Chen ◽  
Mark A. Arnould ◽  
...  

2017 ◽  
Vol 113 ◽  
pp. 97-107 ◽  
Author(s):  
Qionghua Wei ◽  
Cornelia M. Keck ◽  
Rainer H. Müller
Keyword(s):  

Author(s):  
Ronglin Ma ◽  
Xiaoming Cai ◽  
Ye Zhou ◽  
Xi Liu ◽  
Di Wu ◽  
...  

Amorphous silica nanoparticles (ASiNPs) are generally considered to be biocompatible with limited acute toxicity. These nanoparticles were therefore exploited in diverse nanoproducts (e.g. foods and cosmetics) and may be released...


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21953-21963 ◽  
Author(s):  
Xiaowei Xu ◽  
Maolei Sun ◽  
Dandan Wang ◽  
Wenhuan Bu ◽  
Zilin Wang ◽  
...  

Bone morphogenetic protein-2 plasmid was encapsulated by polyethylenimine-modified porous silica nanoparticles, which promoted osteogenic differentiation and increased calcium deposition with the involvement of autophagy.


NANO ◽  
2020 ◽  
Vol 15 (03) ◽  
pp. 2050038
Author(s):  
Zhe Chen ◽  
Jiaqiong Xu ◽  
Xuechen Xiang ◽  
Dongfang Ren ◽  
Ning Chen ◽  
...  

In this study, porous silica nanoparticles were fabricated in the absence of organic surfactant template at room temperature by a facile one-step dialysis method. By using a dialysis system comprising an ammonia solution as the dialysate, a series of porous silica nanoparticles with a rough surface (e.g., raspberry-like) were obtained by the initiation of a homogeneous ternary tetraethylsilicate-water-ethanol system with different ammonia solution concentrations. The specific surface area and pore volume of porous nanoparticles were regulated by changing the dialysate concentrations. N2 adsorption–desorption measurements revealed that the porous silica nanoparticles owned both mesopores and micropores and exhibited a type IV isotherm, hence, these nanoparticles can be used as mesoporous silica nanoparticles (MSNs). The Au@MSN nanocomposite can be used as a catalyst for the typical reduction of 4-nitrophenol to 4-aminophenol by NaBH4 and exhibited excellent catalytic performance.


2020 ◽  
Vol 9 (4) ◽  
pp. 454-460
Author(s):  
Lihua Ren ◽  
Jianhui Liu ◽  
Jialiu Wei ◽  
Yefan Du ◽  
Kaiyue Zou ◽  
...  

Abstract With increasing air pollution, silica nanoparticles (SiNPs), as a main inorganic member of PM2.5, have gained increasing attention to its reproductive toxicity. Most existing studies focused on the acute exposure, while data regarding the chronic effect of SiNPs on reproduction is limited. Therefore, this study was designed to evaluate the chronic toxicity of SiNPs on spermatocyte cells. The cells were continuously exposed to SiNPs for 1, 10, 20 and 30 generations at dose of 5 μg/ml SiNPs for 24 h per generation after attachment. The results showed that with the increasing generations of the exposure, SiNPs decreased the viability of spermatocyte cells, induced apoptosis and increased the level of reactive oxygen species in spermatocyte cells. Moreover, SiNPs increased the protein expression of GRP-78, p-PERK, IRE1α, ATF6 and Cleaved caspase-3 in spermatocyte cells, suggesting that SiNPs improved unfolded protein response (UPR) and apoptosis. The present results indicated that the long-term and low-dose exposure to SiNPs could induce apoptosis by triggering ROS-mediated UPR in spermatocyte cells.


Biomaterials ◽  
2012 ◽  
Vol 33 (17) ◽  
pp. 4431-4442 ◽  
Author(s):  
Sandrine Quignard ◽  
Gervaise Mosser ◽  
Michel Boissière ◽  
Thibaud Coradin

2013 ◽  
Vol 20 (3) ◽  
pp. 673-677 ◽  
Author(s):  
Haitham Mohammad Abdelaal ◽  
Mahmoud Farag Zawrah ◽  
Bernd Harbrecht

Sign in / Sign up

Export Citation Format

Share Document