Fibre misalignment and breakage in 3D printing of continuous carbon fibre reinforced thermoplastic composites

2021 ◽  
Vol 38 ◽  
pp. 101775
Author(s):  
Haoqi Zhang ◽  
Jiayun Chen ◽  
Dongmin Yang
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2021 ◽  
pp. 109679
Author(s):  
Yiwei Hu ◽  
Raj B. Ladani ◽  
Milan Brandt ◽  
Yazhi Li ◽  
Adrian P. Mouritz

2020 ◽  
Vol 182 ◽  
pp. 107612 ◽  
Author(s):  
Nanya Li ◽  
Guido Link ◽  
Ting Wang ◽  
Vasileios Ramopoulos ◽  
Dominik Neumaier ◽  
...  

2011 ◽  
Vol 40 (2) ◽  
pp. 100-107 ◽  
Author(s):  
K K C Ho ◽  
S‐R Shamsuddin ◽  
S Riaz ◽  
S Lamorinere ◽  
M Q Tran ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2188
Author(s):  
Andrew N. Dickson ◽  
Hisham M. Abourayana ◽  
Denis P. Dowling

Three-dimensional (3D) printing has been successfully applied for the fabrication of polymer components ranging from prototypes to final products. An issue, however, is that the resulting 3D printed parts exhibit inferior mechanical performance to parts fabricated using conventional polymer processing technologies, such as compression moulding. The addition of fibres and other materials into the polymer matrix to form a composite can yield a significant enhancement in the structural strength of printed polymer parts. This review focuses on the enhanced mechanical performance obtained through the printing of fibre-reinforced polymer composites, using the fused filament fabrication (FFF) 3D printing technique. The uses of both short and continuous fibre-reinforced polymer composites are reviewed. Finally, examples of some applications of FFF printed polymer composites using robotic processes are highlighted.


Sign in / Sign up

Export Citation Format

Share Document