scholarly journals Image interpolation by rational ball cubic B-spline representation and genetic algorithm

2018 ◽  
Vol 57 (2) ◽  
pp. 931-937 ◽  
Author(s):  
Samreen Abbas ◽  
Malik Zawwar Hussain ◽  
Misbah Irshad
2018 ◽  
Vol 12 (5) ◽  
pp. 769-777 ◽  
Author(s):  
Samreen Abbas ◽  
Misbah Irshad ◽  
Malik Zawwar Hussain

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
C. H. Garcia-Capulin ◽  
F. J. Cuevas ◽  
G. Trejo-Caballero ◽  
H. Rostro-Gonzalez

B-spline surface approximation has been widely used in many applications such as CAD, medical imaging, reverse engineering, and geometric modeling. Given a data set of measures, the surface approximation aims to find a surface that optimally fits the data set. One of the main problems associated with surface approximation by B-splines is the adequate selection of the number and location of the knots, as well as the solution of the system of equations generated by tensor product spline surfaces. In this work, we use a hierarchical genetic algorithm (HGA) to tackle the B-spline surface approximation of smooth explicit data. The proposed approach is based on a novel hierarchical gene structure for the chromosomal representation, which allows us to determine the number and location of the knots for each surface dimension and the B-spline coefficients simultaneously. The method is fully based on genetic algorithms and does not require subjective parameters like smooth factor or knot locations to perform the solution. In order to validate the efficacy of the proposed approach, simulation results from several tests on smooth surfaces and comparison with a successful method have been included.


Author(s):  
Hartmut Prautzsch ◽  
Wolfgang Boehm ◽  
Marco Paluszny

2011 ◽  
Vol 50-51 ◽  
pp. 564-567
Author(s):  
Yun Feng Yang ◽  
Xiao Guang Wei ◽  
Zhi Xun Su

Image interpolation is used widely in the computer vision. Holding edge information is main problem in the image interpolation. By using bilinear and bicubic B-spline interpolation methods, a novel image interpolation approach was proposed in this paper. Firstly, inverse distance weighted average method was used to reduce image’s noise. Secondly, edge detection operator was used to extract image's edges information. It can help us to select different interpolation methods in the image interpolation process. Finally, we selected bilinear interpolation approach at non-edge regions, and bicubic B-spline interpolation method was used near edges regions. Further more, control vertexes were computed from pixels with calculation formula which has been simplified in the B-spline interpolation process. Experiments showed the interpolated image by the proposed method had good vision results for it could hold image's edge information effectively.


Sign in / Sign up

Export Citation Format

Share Document