Vascular plant species diversity in Southeast Asian rice ecosystems is determined by climate and soil conditions as well as the proximity of non-paddy habitats

2021 ◽  
Vol 314 ◽  
pp. 107346
Author(s):  
Oliver Fried ◽  
Catrin Westphal ◽  
Jenny Schellenberg ◽  
Volker Grescho ◽  
Ingolf Kühn ◽  
...  
1975 ◽  
Vol 53 (15) ◽  
pp. 1465-1472 ◽  
Author(s):  
David C. Glenn-Lewin

Vascular plant species diversity in the ravines of the southern Finger Lakes followed the ravine-side gradient and vegetation characteristics described by Lewin (1974). Bottom and lower-slope mesophytic communities were very rich in species, middle-to-upper hemlock stands were very poor in species, while the upper oak stands were again somewhat richer. Dominance followed an inverse pattern, being lowest in the low, mesophytic stands and high in the hemlock stands. The amount of hemlock in the canopy appeared to have an effect on diversity.


2015 ◽  
Vol 345 ◽  
pp. 50-55 ◽  
Author(s):  
Daniele Giorgini ◽  
Paolo Giordani ◽  
Gabriele Casazza ◽  
Valerio Amici ◽  
Mauro Giorgio Mariotti ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e15734 ◽  
Author(s):  
Jonathan Lenoir ◽  
Jean-Claude Gégout ◽  
Antoine Guisan ◽  
Pascal Vittoz ◽  
Thomas Wohlgemuth ◽  
...  

2016 ◽  
Vol 25 (1) ◽  
pp. 25-54 ◽  
Author(s):  
Milenko Milović ◽  
◽  
Sanja Kovačić ◽  
Nenad Jasprica ◽  
Vanja Stamenković ◽  
...  

2015 ◽  
Vol 73 (1) ◽  
pp. 95-123 ◽  
Author(s):  
J. L. Marcelo-Peña ◽  
I. Huamantupa ◽  
T. Särkinen ◽  
M. Tomazello

In this study, we report species diversity and endemism of the poorly known but highly diverse Seasonally Dry Tropical Forest (SDTF) flora of the Marañón valley in northern Peru. We characterise woody vascular plant species diversity across the valley in order to define the conservation value of the area at national and international level. Based on 32 rapid botanical inventories, 92 plots of 50 × 20 m, and a herbarium study across local and international herbaria, we report 440 woody vascular plant species of which 143 (33%) are endemic to the valley. Two centres of endemism within the valley are identified, each with clear elevational zonation of diversity. Data show that the Marañón valley is a good representative of Peruvian SDTFs as a whole, with an average of 56% SDTF species and 78% SDTF genera found in the one valley. The results show that there is wide variation in the set of dominant species across the valley, and that many local endemics are locally abundant unlike in neighbouring SDTFs where the dominant species are all geographically widespread. Our results demonstrate that the Marañón includes a rare combination of both nationally representative yet globally unique plant species, which makes the valley an ideal conservation target. The high level of endemism structured within elevational zones implies that conservation areas should be established across elevational zones in order to maximise the protection of this globally unique flora.


2013 ◽  
Vol 10 (3) ◽  
pp. 5671-5700 ◽  
Author(s):  
E. Solly ◽  
I. Schöning ◽  
S. Boch ◽  
J. Müller ◽  
S. A. Socher ◽  
...  

Abstract. Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was significantly older and more variable compared to grasslands 1.7 ± 0.4 yr. We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated to plant diversity (r = 0.65) and to the number of perennial species (r = 0.77). In temperate grasslands the mean age of fine root C is also influenced by the study region mainly driven by differences in soil characteristics and climate which reflect in plant composition variations, with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic sandy soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in more silty and clayey soils respectively in central and southern Germany. Our results indicate an internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.


2013 ◽  
Vol 10 (7) ◽  
pp. 4833-4843 ◽  
Author(s):  
E. Solly ◽  
I. Schöning ◽  
S. Boch ◽  
J. Müller ◽  
S. A. Socher ◽  
...  

Abstract. Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27) (p < 0.05), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was older and more variable compared to grasslands 1.7 ± 0.4 yr (p < 0.001). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated with plant diversity (r = 0.65) and with the number of perennial species (r = 0.77). Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in central and southern Germany (p < 0.05). This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.


2016 ◽  
Vol 75 (2) ◽  
pp. 217-225 ◽  
Author(s):  
Małgorzata Wrzesień ◽  
Bożena Denisow

Abstract Plant species diversity is threatened in many agricultural landscapes due to the changes it has to undergo. Although the modification of the agricultural landscape pattern is observed across Europe, both extensive and intensive agricultural landscapes still co-exist in Poland. The objective of the study was to examine the flora in field margins in intensively and extensively managed agricultural landscapes, located across three regions in SE Poland. The flora was compared with respect to species richness, diversity, and evenness indices. Detrended correspondence analysis was employed to characterise variation in species composition. Agricultural landscape type made a higher contribution than the topography or geology to species richness and composition in field margins. Field margins function as important habitats for general vascular plant species diversity and are useful for the conservation of rare, threatened, endangered or bee plants. A significant decline in species diversity was observed over a distance of 1000 m from the habitat elements. Plants growing on field margins are mainly perennials; however participation of annuals clearly increases in intensive landscapes. The participation of wind-dispersed species decreased in an open-spaced intensive landscape. Animal-dispersed plants predominated in an extensive landscape with forest islands. Irrespective of landscape type, native species predominated. However, these habitats create the biota and corridors for alien-invasive species as well.


Sign in / Sign up

Export Citation Format

Share Document