scholarly journals Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

2015 ◽  
Vol 81 ◽  
pp. 143-149 ◽  
Author(s):  
N. Bartel ◽  
M. Chen ◽  
V.P. Utgikar ◽  
X. Sun ◽  
I.-H. Kim ◽  
...  
Author(s):  
Venkata Rajesh Saranam ◽  
Peter Carter ◽  
Kyle Rozman ◽  
Ömer Dogan ◽  
Brian K. Paul

Abstract Hybrid compact heat exchangers (HCHEs) are a potential source of innovation for intermediate heat exchangers in nuclear industry, with HCHEs being designed for Gen-IV nuclear power applications. Compact heat exchangers are commonly fabricated using diffusion bonding, which can provide challenges for HCHEs due to resultant non-uniform stress distributions across hybrid structures during bonding, leading to variations in joint properties that can compromise performance and safety. In this paper, we introduce and evaluate a heuristic for determining whether a feasible set of diffusion bonding conditions exist for producing HCHE designs capable of meeting regulatory requirements under nuclear boiler and pressure vessel codes. A diffusion bonding model for predicting pore elimination and structural analyses are used to inform the heuristic and a heat exchanger design for 316 stainless steel is used to evaluate the efficacy of the heuristic to develop acceptable diffusion bonding parameters. A set of diffusion bonding conditions were identified and validated experimentally by producing various test coupons for evaluating bond strength, ductility, porosity, grain size, creep rupture, creep fatigue and channel deviation. A five-layer hybrid compact heat exchanger structure was fabricated and tensile tested demonstrating that the bonding parameters satisfy all criteria in this paper for diffusion bonding HCHEs with application to the nuclear industry.


Author(s):  
Jian Zhou ◽  
Ming Ding ◽  
Haozhi Bian ◽  
Yinxing Zhang ◽  
Zhongning Sun

The parallel compact heat exchangers have been widely applied in the various fields such as heat exchangers in chemical engineering, the solar collector, fuel cells and the passive removal heat exchanger in passive containment cooling system (PCCS), etc. The heat exchangers in the PCCS removes out the heat brought by the steam coming out from the broken reactor or primary cooling system. Therefore, the performance of the passive containment cooling system heat exchanger (PCCS HX) will greatly influence the safety and integrity of the containment. In previous investigations on the parallel compact heat exchangers, attentions are focused on the pressure distribution and flow distribution in the heat exchangers. A bad flow distribution in the heat exchanger will reduce the heat performance. More seriously, the coolant in some tubes may boils and the tubes will be overheated, resulting in explosion of tubes. Therefore, the characteristic of pressure distribution and the flow distribution should be investigated for a uniform flow distribution. In the past studies of the compact heat exchangers, the numbers of tube are almost under 72 which is relatively small, while the number of tubes PCCS HX is usually over than 100. And the pressure distribution in compact heat exchangers is assumed that the pressure recovery plays a leading role. However, the more numbers of tube will bring more flow maldistribution, if the geometry design is selected inappropriately. The reverse flow may occur in the heat exchanger, which means that in some tubes, the coolant flows from the tube outlet to the inlet. This phenomenon of reverse flow have never been mentioned in previous studies. The occurrence of the reverse flow will significantly decrease the performance of the heat exchanger and cause a bad influence on the safety of the containment. In the PCCS, the Z-type heat exchanger is one of the choice of PCCS HX (heat exchanger) design. Therefore, the present study focus on the characteristic of reverse flow phenomenon in Z-type heat exchangers. The pressure distribution and the flow distribution have been separately investigated deeply. The conclusion of this study will provide a guide to the geometry design of the PCCS HX with large number of tubes.


2005 ◽  
Author(s):  
Richard G. Carranza

Important auxiliary equations are presented that are typically used in compact heat exchanger research. These relationships are presented only for selected compact heat exchangers — bare pipe, helically finned pipe, plate finned pipe, spined pipe, and plate exchangers. The equations primarily address issues relating to heat exchanger geometry, surface area to volume ratio, and fin efficiency. Furthermore, they are organized in a systematic manner and consolidated in one central location for easy reference.


Author(s):  
Ibrahim Khalil ◽  
Ahmad Abu Heiba ◽  
Robert Boehm

Plate fin heat exchangers (PFHE) are characterized by very close temperature approaches and high thermal effectiveness, large heat transfer area per unit volume, low weight per unit transfer and possibility of heat exchange between many process streams. These advantages are only limited by operating fluid temperatures and pressures. The main target of this paper is to study the performance of plate fin compact heat exchangers and to provide full explanation of previous comparison methods of compact heat exchanger surfaces (plain, strip, louvered, wavy, pin, perforated and vortex) used in plate fin compact heat exchangers. We generalize these methods to identify the advantages and disadvantages of each type of geometry (more than sixty geometries studied) based on required size, entropy generation, pumping power, weight, and cost. The effect of using different surfaces on each side of the heat exchanger and design recommendations are also discussed.


Author(s):  
Merrill A. Wilson ◽  
Charles Lewinsohn ◽  
James Cutts ◽  
Yitung Chen ◽  
Valery Ponyavin

The recent developments in the energy industry have kindled renewed interest in producing energy more efficiently. This has motivated the development of higher temperature cycles and their associated equipment. In this paper we will discuss several design configurations coupled with the inherent properties of preferred ceramic materials to assess the viability and design reliability of ceramic heat exchangers for next generation high temperature heat exchangers. These analyses have been extended to conceptually compare the traditional shell and tube heat exchanger with shell and plate heat exchangers. These analyses include hydrodynamic, heat transfer, mechanical stress and reliability models applicable to an Intermediate Heat Exchanger (IHX) and Process Coupling Heat Exchangers. It was found that ceramic micro-channel heat exchanger designs proved to have the greatest reliability due to their inherent mechanical properties, minimal thermo-mechanical stresses while improving the performance efficiency in a compact footprint.


Author(s):  
Aihua Wang ◽  
Samir F. Moujaes ◽  
Yitung Chen ◽  
Valery Ponyavin

Heat transfer in compact heat exchangers is augmented by the introduction of the offset strip fins. With the breakdown of the thermal and hydro boundary layers to boost heat transfer, the fins increase the friction power. Two heat exchangers of different fin geometries structures were built and tested. The results of the study show that the round-edge-fin heat exchanger has the smaller friction factor. A test rig was constructed to measure the friction factor of the offset strip fin heat exchangers with air. A modified hydraulic diameter was used to calculate the main parameters. The computational fluid dynamics package FLUENT was used to predict the flow in the heat exchanger. The numerical investigation was conducted and compared with experimental measurements.


2000 ◽  
Vol 53 (7) ◽  
pp. 175-193 ◽  
Author(s):  
S. S. Mehendale ◽  
A. M. Jacobi ◽  
R. K. Shah

By their very nature, compact heat exchangers allow an efficient use of material, volume, and energy in thermal systems. These benefits have driven heat exchanger design toward higher compactness, and the trend toward ultra-compact designs will continue. Highly compact surfaces can be manufactured using micro-machining and other modern technologies. In this paper, unresolved thermal-hydraulic issues related to ultra-compact designs are discussed, and the status of the technologies required for the production of ultra-compact structured surfaces is summarized. This review article includes 67 references.


2017 ◽  
Vol 67 (2) ◽  
pp. 13-24
Author(s):  
Štefan Gužela ◽  
František Dzianik ◽  
Martin Juriga ◽  
Juraj Kabát

AbstractNowadays, the operating nuclear reactors are able to utilise only 1 % of mined out uranium. An effective exploitation of uranium, even 60 %, is possible to achieve in so-called fast reactors. These reactors commercial operation is expected after the year 2035. Several design configurations of these reactors exist. Fast reactors rank among the so-called Generation IV reactors. Helium-cooled reactor, as a gas-cooled fast reactor, is one of them. Exchangers used to a heat transfer from a reactor active zone (i.e. heat exchangers) are an important part of fast reactors. This paper deals with the design calculation of U-tube heat exchanger (precisely 1-2 shell and tube heat exchanger with U-tubes): water – helium.


Sign in / Sign up

Export Citation Format

Share Document