Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence

2017 ◽  
Vol 381 ◽  
pp. 137-150 ◽  
Author(s):  
A.-B.A. Mohamed ◽  
N. Metwally
2021 ◽  
pp. 2150074
Author(s):  
Youssef Khedif ◽  
Mohammed Daoud

We investigate the quantum correlations of a two-qubit XYZ Heisenberg spin-1/2 chain model with Dzyaloshinskii–Moriya interaction. The two-qubit system is considered in thermal equilibrium. The variations of logarithmic negativity, uncertainty-induced quantum nonlocality (UIN) and trace distance discord, versus the parameters characterizing the system, are analyzed. The results show that the UIN measure captures quantum correlations that cannot be revealed by entanglement and trace discord. We also show that the Dzyaloshinskii–Moriya interaction enhances the non-classical correlations between the spins and can weaken the undesirable destructive effects of thermal fluctuations. In addition, an entangled–unentangled phase transition can be detected from the behavior of logarithmic negativity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abdel-Baset A. Mohamed ◽  
Hichem Eleuch

AbstractWe explore the phase space quantum effects, quantum coherence and non-classicality, for two coupled identical qubits with intrinsic decoherence. The two qubits are in a nonlinear interaction with a quantum field via an intensity-dependent coupling. We investigate the non-classicality via the Wigner functions. We also study the phase space information and the quantum coherence via the Q-function, Wehrl density, and Wehrl entropy. It is found that the robustness of the non-classicality for the superposition of coherent states, is highly sensitive to the coupling constants. The phase space quantum information and the matter-light quantum coherence can be controlled by the two-qubit coupling, initial cavity-field and the intrinsic decoherence.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950109
Author(s):  
Fatima-Zahra Siyouri ◽  
Hicham Ait Mansour ◽  
Fadoua Elbarrichi

We investigate the ability of Wigner function to reveal and measure general quantum correlations in two-qubit open system. For this purpose, we analyze comparatively their dynamics for two different states, continuous-variable Werner states (CWS) and Bell-diagonal states (BDS), independently interacting with dephasing reservoirs. Then, we explore the effects of decreasing the degree of non-Markovianity on their behavior. We show that the presence of both quantum entanglement and quantum discord allow to have a negative Wigner function, in contrast to the result obtained for the closed two-qubit system [F. Siyouri, M. El Baz and Y. Hassouni, The negativity of Wigner function as a measure of quantum correlations, Quantum Inf. Process. 15(10) (2016) 4237–4252]. In fact, we conclude that negativity of Wigner function can be used to capture and quantify the amount of general non-classical correlations in open quantum systems.


2012 ◽  
Vol 21 (1) ◽  
pp. 010301 ◽  
Author(s):  
Hong-Gui Sun ◽  
Li-Hua Zhang ◽  
Wan-Fang Liu ◽  
Chun-Jie Li

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abdel-Haleem Abdel-Aty ◽  
Heba Kadry ◽  
A. -B. A. Mohamed ◽  
Hichem Eleuch

Abstract In this contribution, we investigate the bipartite non-classical correlations (NCCs) of a system formed by two nitrogen-vacancy (N-V) centers placed in two spatially separated single-mode nanocavities inside a planar photonic crystal (PC). The physical system is mathematically modeled by time-dependent Schrödinger equation and analytically solved. The bipartite correlations of the two N-V centers and the two-mode cavity have been analyzed by skew information, log-negativity, and Bell function quantifiers. We explore the effects of the coupling strength between the N-V-centers and the cavity fields as well as the cavity-cavity hopping constant and the decay rate on the generated correlation dynamics. Under some specific parameter values, a large amount of quantum correlations is obtained. This shows the possibility to control the dynamics of the correlations for the NV-centers and the cavity fields.


Sign in / Sign up

Export Citation Format

Share Document