Economic analysis of grid integration of variable solar and wind power with conventional power system

2020 ◽  
Vol 264 ◽  
pp. 114706 ◽  
Author(s):  
Xing Yao ◽  
Bowen Yi ◽  
Yang Yu ◽  
Ying Fan ◽  
Lei Zhu
2012 ◽  
Vol 17 (3) ◽  
pp. 210-220 ◽  
Author(s):  
Mo Zhao ◽  
Anuj Sharma ◽  
Dave G. Bernt ◽  
Joshua A. Meyer ◽  
Benjamin Dickey ◽  
...  

2013 ◽  
Vol 694-697 ◽  
pp. 846-849
Author(s):  
Jian Yuan Xu ◽  
Wei Fu Qi ◽  
Yun Teng

This paper mainly studies wind power fluctuations how to affect voltage stability after the wind power grid integration, and reactive power compensation equipment on improving effect. In certain parts of the wind farm, for example, firstly, analyzing the wind farm reactive power problems. Then introduce the reactive power compensation equipment that used in the wind farm. Finally, with PSCAD software, making a simulation analysis about the influence on the power grid voltage according to adopting the different reactive power compensation devices or not.


Energy ◽  
2017 ◽  
Vol 140 ◽  
pp. 1173-1181 ◽  
Author(s):  
Wendell de Queiróz Lamas

2013 ◽  
Vol 133 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Hiroaki Sugihara ◽  
Akihiro Ogawa ◽  
Manabu Kuramoto ◽  
Fumio Ishikawa ◽  
Hideo Yata ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4650
Author(s):  
Martha N. Acosta ◽  
Francisco Gonzalez-Longatt ◽  
Juan Manuel Roldan-Fernandez ◽  
Manuel Burgos-Payan

The massive integration of variable renewable energy (VRE) in modern power systems is imposing several challenges; one of them is the increased need for balancing services. Coping with the high variability of the future generation mix with incredible high shares of VER, the power system requires developing and enabling sources of flexibility. This paper proposes and demonstrates a single layer control system for coordinating the steady-state operation of battery energy storage system (BESS) and wind power plants via multi-terminal high voltage direct current (HVDC). The proposed coordinated controller is a single layer controller on the top of the power converter-based technologies. Specifically, the coordinated controller uses the capabilities of the distributed battery energy storage systems (BESS) to store electricity when a logic function is fulfilled. The proposed approach has been implemented considering a control logic based on the power flow in the DC undersea cables and coordinated to charging distributed-BESS assets. The implemented coordinated controller has been tested using numerical simulations in a modified version of the classical IEEE 14-bus test system, including tree-HVDC converter stations. A 24-h (1-min resolution) quasi-dynamic simulation was used to demonstrate the suitability of the proposed coordinated control. The controller demonstrated the capacity of fulfilling the defined control logic. Finally, the instantaneous flexibility power was calculated, demonstrating the suitability of the proposed coordinated controller to provide flexibility and decreased requirements for balancing power.


Sign in / Sign up

Export Citation Format

Share Document