A novel framework to estimate soil mineralogy using soil spectroscopy

2021 ◽  
Vol 127 ◽  
pp. 104909
Author(s):  
Wanderson de Sousa Mendes ◽  
José A.M. Demattê ◽  
Benito Roberto Bonfatti ◽  
Maria Eduarda B. Resende ◽  
Lucas Rabelo Campos ◽  
...  
Keyword(s):  
2013 ◽  
Vol 27 (3) ◽  
pp. 239-246 ◽  
Author(s):  
A.E. Ajayi ◽  
M.S. Dias Junior ◽  
N. Curi ◽  
I. Oladipo

Abstract This study aimed to investigate the mineralogy, moisture retention, and the compressive response of two agricultural soils from South West Nigeria. Undisturbed soil cores at the A and B horizons were collected and used in chemical and hydrophysical characterization and confined compression test. X-ray diffractograms of oriented fine clay fractions were also obtained. Our results indicate the prevalence of kaolinite minerals relating to the weathering process in these tropical soils. Moisture retention by the core samples was typically low with pre-compression stress values ranging from50 to 300 kPa at both sites. Analyses of the shape of the compression curves highlight the influence of soil moisture in shifts from the bi-linear to S-shaped models. Statistical homogeneity test of the load bearing capacity parameters showed that the soil mineralogy influences the response to loading by these soils. These observations provide a physical basis for the previous classification series of the soils in the studied area. We showed that the internal strength attributes of the soil could be inferred from the mineralogical properties and stress history. This could assist in decisions on sustainable mechanization in a datapoor environment.


2020 ◽  
Vol 57 (9) ◽  
pp. 1356-1368 ◽  
Author(s):  
Hayder H. Abdullah ◽  
Mohamed A. Shahin ◽  
Megan L. Walske ◽  
Ali Karrech

Traditional soil stabilization by chemical additives such as cement and lime is a well-established technique for ground improvement of problematic soils. However, with the advantage of lower carbon emission and energy consumption, fly-ash-based geopolymer has recently become an attractive alternative to traditional stabilizers. Nevertheless, the literature lacks systemic approaches that assist engineers to apply this promising binder for soil stabilization, including the proper dosages required for an effective treatment. This paper introduces a systematic approach to assess the applicability of fly-ash-based geopolymer for stabilization of clay soils, through a comprehensive experimental program where engineered and natural clays were examined and evaluated, including soil compaction, plasticity, compressive strength, durability, pH level, and impact of pulverization. The results revealed several factors that influence the level of enhancement of geopolymer-treated clays, including the soil mineralogy, plasticity–activity properties, geopolymer concentration, curing time, and pulverization.


2021 ◽  
Author(s):  
María Gonçalves Ageitos ◽  
Matt Dawson ◽  
Vincenzo Obiso ◽  
Martina Klose ◽  
Ron Miller ◽  
...  

<p>Dust aerosols consist on a variety of minerals with different physic and chemical properties. As such, they interact with short and long wave radiation, potentially form clouds, act as nutrients modulating biogeochemical cycles, or influence atmospheric chemistry, differently. Most current state-of-the-art Earth System Models (ESMs) neglect the complexity in dust composition, mainly due to computational constraints, but also to the existing uncertainties in the size resolved composition of parent soils, the resulting distribution of minerals in airborne dust, and the scarcity of observations to constrain them.</p><p>Within this work, we assess the variability of global dust composition due to uncertainties in the characterization of the parent soil mineralogy. To that end, we consider two available global soil mineralogy atlases, developed by Claquin et al. (1999) –C1999- and Journet et al. (2014) –J2014-, which represent respectively 8 and 12 relevant minerals for climate (namely: illite, smectite/montmorillonite, kaolinite, calcite, gypsum, hematite, quartz, and feldspars in C1999, and those plus chlorite, vermiculite, goethite, and mica in J2014). Thanks to a recently developed feature of the MONARCH atmospheric-chemistry model, we are able to explicitly resolve the minerals’ atmospheric cycle. Therefore, we define two global experiments to assess changes on airborne dust composition attributed to the soil mineralogy assumptions and provide a measure of their variability. We also perform a preliminary evaluation of the global mineralogy results against available observations of mineral fractions in surface dust concentration.</p><p>Our results will inform the climate modelling community about the potential variability in dust composition, an aspect that will gain relevance as ESMs continue growing in complexity and new processes to better characterize aerosols’ forcing or biogeochemical cycles are added. Further observational constraints, such as those that will derive from the EMIT NASA mission on soil composition or the FRAGMENT experimental campaigns on airborne dust characterization, will be key in the near future to improve our understanding of the impact of dust mineralogy on fundamental climate features.</p>


2004 ◽  
Vol 68 (3) ◽  
pp. 979-993 ◽  
Author(s):  
M. E. Essington ◽  
J. E. Foss ◽  
Y. Roh
Keyword(s):  

2011 ◽  
pp. 27-32
Author(s):  
Igori Arcadie Krupenikov ◽  
Boris P. Boincean ◽  
David Dent

Sign in / Sign up

Export Citation Format

Share Document