A constitutive model for the flow stress behavior and microstructure evolution in aluminum alloys under hot working conditions – with application to AA6099

2020 ◽  
Vol 81 ◽  
pp. 253-262
Author(s):  
Håkan Hallberg ◽  
Ahmad Chamanfar ◽  
Nicholas E. Nanninga
2015 ◽  
Vol 22 (3) ◽  
pp. 815-820 ◽  
Author(s):  
Li Li ◽  
Hui-zhong Li ◽  
Xiao-peng Liang ◽  
Lan Huang ◽  
Tao Hong

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1408
Author(s):  
Huaying Li ◽  
Lihong Gao ◽  
Yaohui Song ◽  
Lidong Ma ◽  
Haitao Liu ◽  
...  

In order to study the microstructure evolution and flow stress behavior of as cast antibacterial austenitic stainless steel containing 1.52 wt.% copper, Gleeble 3800 was used for thermal compression simulation test. Through OM and EBSD analysis, it is found that the dynamic recrystallization mechanism of thermal deformation is mainly discontinuous dynamic recrystallization. With the increase of deformation temperature and deformation rate, the proportion of recrystallization nucleation gradually increases. The growth of twins relies on recrystallization and, at the same time, promotes dynamic recrystallization. Considering the influence of strain on flow stress, the strain compensation Arrhenius model is established according to the obtained stress-strain curve, and high accuracy is obtained. The correlation coefficient and average relative absolute error are 0.979 and 7.066% respectively. These results provide basic guidance for the technology of microstructure control and excellent mechanical properties of antibacterial stainless steel.


Vacuum ◽  
2021 ◽  
pp. 110323
Author(s):  
Faisal Nazeer ◽  
Syed Zohaib Hassan Naqvi ◽  
Abul Kalam ◽  
A.G. Al-Sehemi ◽  
Hussein Alrobi

2021 ◽  
Author(s):  
Adanma Akoma ◽  
Kevin Sala ◽  
Chase Sheeley ◽  
Lesley D. Frame

Abstract Determination of flow stress behavior of materials is a critical aspect of understanding and predicting behavior of materials during manufacturing and use. However, accurately capturing the flow stress behavior of a material at different strain rates and temperatures can be challenging. Non-uniform deformation and thermal gradients within the test sample make it difficult to match test results directly to constitutive equations that describe the material behavior. In this study, we have tested AISI 9310 steel using a Gleeble 3500 physical simulator and Digital Image Correlation system to capture transient mechanical properties at elevated temperatures (300°C – 600°C) while controlling strain rate (0.01 s-1 to 0.1 s-1). The data presented here illustrate the benefit of capturing non-uniform plastic strain of the test specimens along the sample length, and we characterize the differences between different test modes and the impact of the resulting data that describe the flow stress behavior.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruichao Guo ◽  
Jianjun Wu ◽  
Yinxiang Ren

Purpose Accurate prediction of residual stress requires precise knowledge of the constitutive behavior of as-quenched material. This study aims to model the flow stress behavior for as-quenched Al-Mg-Si alloy. Design Methodology Approach In the present work, the flow behavior of as-quenched Al-Mg-Si alloy is studied by the hot compression tests at various temperatures (573–723 K), strain rates (0.1–1 s−1) and cooling rates (1–10 K/s). Flow stress behavior is then experimentally observed, and an Arrhenius model is used to predict the flow behavior. However, due to the fact that materials parameters and activation energy do not remain constant, the Arrhenius model has an unsatisfied prediction for the flow behavior. Considering the effects of temperatures, strain rates and cooling rates on constitutive behavior, a revised Arrhenius model is developed to describe the flow stress behavior. Findings The experimental results show that the flow stress increases by the increasing cooling rate, increasing strain state and decreasing temperature. In comparison to the experimental data, the revised Arrhenius model has an excellent prediction for as-quenched Al-Mg-Si alloy. Originality Value With the revised Arrhenius model, the flow behaviors at different quenching conditions can be obtained, which is an essential step to the residual stress prediction when the model is implemented in a finite element code, e.g. ABAQUS, in the future.


Sign in / Sign up

Export Citation Format

Share Document