Optimal Sensor Placement Method Considering the Importance of Structural Performance Degradation for the Allowable Loadings for Damage Identification

2020 ◽  
Vol 86 ◽  
pp. 384-403
Author(s):  
Qinghe Shi ◽  
Xiaojun Wang ◽  
Wenpin Chen ◽  
Kejun Hu
2020 ◽  
Vol 14 (1) ◽  
pp. 69-81
Author(s):  
C.H. Li ◽  
Q.W. Yang

Background: Structural damage identification is a very important subject in the field of civil, mechanical and aerospace engineering according to recent patents. Optimal sensor placement is one of the key problems to be solved in structural damage identification. Methods: This paper presents a simple and convenient algorithm for optimizing sensor locations for structural damage identification. Unlike other algorithms found in the published papers, the optimization procedure of sensor placement is divided into two stages. The first stage is to determine the key parts in the whole structure by their contribution to the global flexibility perturbation. The second stage is to place sensors on the nodes associated with those key parts for monitoring possible damage more efficiently. With the sensor locations determined by the proposed optimization process, structural damage can be readily identified by using the incomplete modes yielded from these optimized sensor measurements. In addition, an Improved Ridge Estimate (IRE) technique is proposed in this study to effectively resist the data errors due to modal truncation and measurement noise. Two truss structures and a frame structure are used as examples to demonstrate the feasibility and efficiency of the presented algorithm. Results: From the numerical results, structural damages can be successfully detected by the proposed method using the partial modes yielded by the optimal measurement with 5% noise level. Conclusion: It has been shown that the proposed method is simple to implement and effective for structural damage identification.


Author(s):  
Ziyuan Qi ◽  
Liqing Fang ◽  
Yangyang Zhang ◽  
Yanan Li ◽  
Mengshan Jia

2016 ◽  
Vol 07 (06) ◽  
pp. 814-823 ◽  
Author(s):  
U. Muthuraman ◽  
M. M. Sai Hashita ◽  
N. Sakthieswaran ◽  
P. Suresh ◽  
M. Raj Kumar ◽  
...  

Author(s):  
Sung-Kwon Hong ◽  
Bogdan I. Epureanu ◽  
Matthew P. Castanier

The focus of this work is on sensor placement for structural dynamic analysis and damage detection. In particular, novel sensor placement techniques are presented for the detection of cracks in ground vehicles and other complex structures. These techniques are designed to provide vibration characteristics for complex structures that have both cracks and structural variability (such as uncertainty in the geometry or the material properties). Such techniques are needed because structural variability affects the mode shapes of a structure, and thus the optimal sensor locations for detecting cracks are affected. Two approaches are developed and used: (a) parametric reduced order models (PROMs), and (b) bilinear mode approximation (BMA). Based on PROMs and BMA, a novel sensor placement method (which uses a derivative of the effective independent distributed vector algorithm) is used to determine the optimal sensor locations for complex structures with cracks and structural variability. The approach can also be used to estimate the crack length. The length is identified by using a few mode shapes and only a few selected measurement locations. The information from the sensors can be used to determine variations in mode shapes of the structure (between healthy and cracked states) for different crack lengths. The variation in mode shapes can then be used to identify the crack length. Numerical results are presented for a ground vehicle frame. The sensor placement method is applied first to find the optimal sensor locations for a structure with a crack and parameter variability, and then to identify the length of a crack.


Sign in / Sign up

Export Citation Format

Share Document