Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet

2018 ◽  
Vol 129 ◽  
pp. 1348-1357 ◽  
Author(s):  
Shikun Zhang ◽  
Zhongwei Huang ◽  
Gensheng Li ◽  
Xiaoguang Wu ◽  
Chi Peng ◽  
...  
Author(s):  
Jong Chull Jo ◽  
Young Hwan Choi ◽  
Seok Ki Choi

This paper addresses three-dimensional numerical analyses of the unsteady conjugate heat transfer and thermal stress for a PWR pressurizer surge line pipe with a finite wall thickness, subjected to internally thermal stratification. A primary emphasis of the present study is placed on the investigation of the effects of surge flow direction on the determinations of the transient temperature and thermal stress distributions in the pipe wall. In the present numerical analysis, the thermally stratified flows (in-surge flow and out-surge flow) in the pipe line are simulated using the standard κ-ε turbulent model and a simple and convenient numerical method of treating the unsteady conjugate heat transfer on a non-orthogonal coordinate system is developed. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. The finite element method is employed for the thermal stress analysis to calculate non-dimensional stress distributions at the piping wall as a function of time. Some numerical calculations are performed for a PWR pressurizer surge line pipe model with shortened length, subjected to internally thermal stratification caused either by insurge or outsurge flow with a specified velocity, and the results are discussed in detail.


2021 ◽  
pp. 014459872110153
Author(s):  
Yingming Zhou ◽  
Guozhong Wu ◽  
Shuwei Wang ◽  
Bo Huang ◽  
Fengshun Wang ◽  
...  

The low heat transfer and high energy storage performance of phase change material (PCM) will improve the thermal performance of the PCM-glazed units. However, decreasing the heat transfer results in uneven thermal load on the surface of the PCM-glazed units, which is an important cause of thermal stress in such units, because the glass in glazed units is a fragile material, and then large thermal stress can result in cracks and possible fallout of the glazed units. To study the thermal stress distribution of PCM-glazed units, a method combined numerical simulation and experimental analysis was conducted. First, the heat transfer performance and thermal stress distribution of PCM-glazed units with PCM thicknesses between 3 and 11 mm were experimentally investigated. Results showed that the thermal performance of a glazed unit was improved by adding PCM, and the variation of thermal strain on its surface with a PCM-layer thickness of 7 mm was the smallest in five test facilities. Then, the thermal stress was numerically investigated regarding the PCM height and the aspect ratio of the PCM-glazed unit. The higher the PCM height, the greater the maximum strain. An aspect ratio of PCM-glazed units of 1.5 was recommended.


2003 ◽  
Vol 125 (4) ◽  
pp. 467-474 ◽  
Author(s):  
Jong Chull Jo ◽  
Young Hwan Choi ◽  
Seok Ki Choi

This paper addresses three-dimensional numerical analyses of the unsteady conjugate heat transfer and thermal stress for a PWR pressurizer surge line pipe with a finite wall thickness, subjected to internally thermal stratification. A primary emphasis of the present study is placed on the investigation of the effects of surge flow direction on the determinations of the transient temperature and thermal stress distributions in the pipe wall. In the present numerical analysis, the thermally stratified flows (in-surge flow and out-surge flow) in the pipe line are simulated using the standard κ−ε turbulent model and a simple and convenient numerical method of treating the unsteady conjugate heat transfer on a non-orthogonal coordinate system is developed. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. The finite element method is employed for the thermal stress analysis to calculate non-dimensional stress distributions at the piping wall as a function of time. Some numerical calculations are performed for a PWR pressurizer surge line pipe model with shortened length, subjected to internally thermal stratification caused either by insurge or outsurge flow with a specified velocity, and the results are discussed in detail.


2014 ◽  
Vol 953-954 ◽  
pp. 1459-1462
Author(s):  
Hai Yan Bie ◽  
Meng Zhu Yang

In order to reveal the influence of thermal on the stress distribution of fiber wrapped high-pressure hydrogen vessel, the strain and stress of the vessel in pure mechanical loads are studied firstly. Then thermal loads are taken into account, and the thermal stress distribution is given out. The results show that, the stress of the vessel liner changes little when the loads differ from pure mechanical loads to thermal mechanical coupling loads. While in the fiber-wrapped layer, stresses change significantly, and are non-monotonic. In addition, the deformation of the vessel decreases under thermal mechanical coupling loads.


2019 ◽  
Vol 7 (1) ◽  
pp. 1977-1986 ◽  
Author(s):  
Chih-Kuang Lin ◽  
Tsung-Ting Chen ◽  
An-Shin Chen ◽  
Yau-Pin Chyou ◽  
Lieh-Kwang Chiang

Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


Sign in / Sign up

Export Citation Format

Share Document