Experimental study of film cooling over a fiber-reinforced composite plate with anisotropic thermal conductivity

2019 ◽  
Vol 148 ◽  
pp. 447-456
Author(s):  
Zecan Tu ◽  
Junkui Mao ◽  
Xingsi Han ◽  
Zhenzong He
2000 ◽  
Vol 17 (10) ◽  
pp. 740-742
Author(s):  
Han Jun-Bo ◽  
Tang Li-Guo ◽  
Cheng Jian-Chun ◽  
Berthelot Yves

2012 ◽  
Vol 488-489 ◽  
pp. 676-680
Author(s):  
Pramod Kumar ◽  
S.K. Tiwari

Finite element analysis has been used to find out eigen values and mode shape for fiber reinforced composite plates. FRC plates are important structural elements in modern engineering structures. Vibrations of laminated composite plates have been the subject of significant research activities in recent years. Last two decades have witnessed continued development of advanced composite and other high performance aerospace materials with increased specific strength and modulus, longer fatigue life, higher combat survivability etc. Advanced composite laminates extend the possibility of optimal design through the variation of stacking sequence and fiber orientation, known as composite tailoring. The benefits that accrue from this are not attainable without solving the complexities that are introduced by various coupling effects, such as bending–stretching and bending-twisting. Even, as the matrix material is of relatively low shearing stiffness as compared to the fibers, a reliable prediction of frequency response of laminated plates must account for transverse shear deformation. A four noded quadrilateral finite element is considered for the study of frequency response of composite plate. An analytical solution to the boundary value problem of free vibration response of arbitrarily laminated plates subjected to an admissible boundary condition is presented. A rectangular fiber reinforced composite plate is modeled in FEM software (NISA 15) and natural frequencies, mode shapes are obtained and are compared with the available analytical solutions.


2016 ◽  
Vol 07 (03) ◽  
pp. 1650006 ◽  
Author(s):  
Alexander L. Kalamkarov ◽  
Igor V. Andrianov ◽  
Pedro M. C. L. Pacheco ◽  
Marcelo A. Savi ◽  
Galina A. Starushenko

The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document