Legacy effect of warming on the heterotrophic respiration of alpine grassland on the Qinghai-Tibet Plateau

2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  
2016 ◽  
Vol 13 (22) ◽  
pp. 6273-6284 ◽  
Author(s):  
Shuhua Yi ◽  
Jianjun Chen ◽  
Yu Qin ◽  
Gaowei Xu

Abstract. There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika) on alpine grassland on the Qinghai-Tibet Plateau (QTP). On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ∼  m2), our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ∼  1000 m2) by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1) the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2) pika consumed 8–21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.


2021 ◽  
Author(s):  
Ailin Zhang ◽  
Shixin Wu ◽  
Fanjiang Zeng ◽  
Yong Jiang ◽  
Ruzhen Wang ◽  
...  

Abstract Purpose: In grassland ecosystems, plant functional group (PFG) is an important bridge connecting individual plant to community system. Grassland ecosystem is the main ecosystem type on the Qinghai-Tibet Plateau, so the change of community structure of grassland vegetation.Methods: The Altun Mountains in the northern part of the Qinghai-Tibet Plateau were used as the study area to investigate the PFGs of a high-altitude (> 3700m) grassland in desert areas and their response to temperature and moisture.Results: The main functional groups were forbs and grasses, and the importance values (IV) accounted for more than 50%. Plant species diversity of the community was influenced by the functional groups of legumes IV, and the increase of legumes would promote the increase of plant community diversity. The C, N, P of plant communities were mainly influenced by forbs and grasses, and the relationship between forbs and C, N, P was opposite to that of grasses. There was a positive correlation between forbs and soil TP; a negative correlation between grasses and soil TP; a positive correlation between legumes with soil SOC and TN; and a positive correlation between sedge and soil SOC. However, under the influence of different hydrothermal conditions, forbs and grasses as dominant functional groups had stronger correlation with community and soil nutrients. Conclusions: This indicated that the PFGs with the largest proportion in the community had the greatest influence on the community. This provides a basis for the study of alpine grassland community development and ecosystem function under alpine grassland.


2021 ◽  
Vol 173 ◽  
pp. 106418
Author(s):  
Licong Dai ◽  
Ruiyu Fu ◽  
Xiaowei Guo ◽  
Xun Ke ◽  
Yangong Du ◽  
...  

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Zhao Xuanlan ◽  
Wang Junbang ◽  
Ye Hui ◽  
Muhammad Amir ◽  
Wang Shaoqiang

Sign in / Sign up

Export Citation Format

Share Document