The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis

Aquaculture ◽  
2007 ◽  
Vol 273 (4) ◽  
pp. 656-664 ◽  
Author(s):  
Michael Milione ◽  
Chaoshu Zeng
Crustaceana ◽  
2015 ◽  
Vol 88 (6) ◽  
pp. 675-687 ◽  
Author(s):  
I. Wendt ◽  
P. Thor

We measured ingestion rate (IR), egg production rate (EPR) and egg hatching success (EHS) at increasing prey concentrations and calculated egg production efficiency (EPE) and maintenance rate (MR) in the estuarine copepod Acartia tonsa fed three different algal diets. EPR and EHS were relatively more affected by prey species than by prey concentration. EPEs were constant among carbon concentrations (C) on a diet of Rhodomonas baltica (0.202 ± 0.055, mean ± SD) and Dunaliella tertiolecta (0.034 ± 0.015), but decreased significantly from 0.371 ± 0.062 (mean of two lowest prey concentrations) to 0.200 ± 0.019 at the highest concentration of Thalassiosira weissflogii. In general it seems that other requirements than C demand limit EPE and EHS in A. tonsa. The MR (IR when EPR = 0) was significantly higher on D. tertiolecta, which also yielded the lowest EPEs, and it seems that variations in maintenance requirements may have been instrumental in evoking EPE variations as well.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Camus ◽  
Lucrezia Rolla ◽  
Jufeng Jiang ◽  
Chaoshu Zeng

The optimization of copepod feeding protocol is paramount to improve culture productivity and to maintain favorable water quality parameters overtime, as well as saving operational costs by preventing the production of unnecessary quantities of microalgae. The influence of microalgal feeding concentration on major parameters related to culture productivity of the calanoid copepod Bestiolina similis (Paracalanidae) was investigated in a series of laboratory experiments. B. similis was fed eight different concentrations (0, 150, 300, 600, 900, 1,200, 1,500 and 1,800 μgC l–1) of a mixed microalgal diet consisting of Tahitian strain of Isochrysis species, Pavalova 50 and Tetraselmis chuii at 1:1:1 carbon ratio. The results indicate that female daily and cumulative egg production over lifespan, egg hatching rate, naupliar and copepodite survival and development, adult female life expectancy, population growth and fecal pellet production rate (FPPR) were all significantly affected by microalgae feeding ration. Conversely, no significant influence could be established between microalgae food concentration and egg diameter or adult sex ratio. Feeding rations as low as 150 μgC l–1 led to lower egg hatching rates, survival and development, adult female life expectancy and population growth compared with the higher microalgae rations tested. Feeding concentration ≤ 900 μgC l–1 significantly limited female daily egg and fecal pellet production rate, as well as their cumulative egg production over lifespan, when compared to a level of 900 μgC l–1. Bestiolina similis fed with 1,200 μgC l–1 significantly improved female egg and fecal pellet production when compared to the lower treatments and was responsible for the highest female lifespan egg production and population growth observed among all treatments. Feeding rations as high as 1,500 μgC l–1 and 1,800 μgC l–1 did not lead to significant improvement in any of the parameters measured. This is likely due to a saturation effect at high food concentration which is known to decrease calanoid copepods feeding efficiency. Finally, B. similis FPPR, used as a proxy for ingestion, was found to saturate at a microalgae concentration of 783.4 μgC l–1 using a non-linear Michael-Menton (2 parameters), indicating that CVI female ingestion did not increase significantly above this concentration. Based on the above results it is recommended that B. similis cultures should be fed at a concentration of 1,200 μgC l–1, and not above, as rations > 1,200 μgC l–1 will not significantly improve any of the productivity-related parameters observed in this study. Feeding rations should never be below 783.40 μgC l–1 as this is the threshold level below which adult female ingestion rates become limiting.


Author(s):  
Yuichiro Nishibe ◽  
Tsutomu Ikeda

Egg development time and hatching success were determined for the oncaeid copepod, Triconia canadensis, from the mesopelagic zone of the western subarctic Pacific. The egg development time was estimated to be 74.7–84.5 days at in situ temperature (3°C), which is much longer than those reported previously on the other oncaeid copepods even if the differences in experimental temperatures are taken into account. The egg hatching success varied between 50 and 100%, with a grand mean of 88%. The newly hatched nauplii of T. canadensis were elongate ellipsoid in shape, and had many large-sized lipid droplets in their body. Possible adaptive significance of apparent longer egg developmment time of T. canadensis is discussed in the light of their life cycle strategy.


1987 ◽  
Vol 65 (12) ◽  
pp. 2922-2926 ◽  
Author(s):  
G. Chapdelaine ◽  
P. Laporte ◽  
D. N. Nettleship

A comparison of the results of recent surveys of Northern Gannets on Bonaventure Island shows that the population increased from 16 400 pairs in 1976 to 21 100 pairs in 1984, which represents an annual increase of 3.2%. Hatching success was only 36–40% between 1966 and 1970, after which it increased to 58% in 1974 and then varied from 78 to 89% during 1976–1984. Net productivity now exceeds the level necessary to maintain zero population growth. The marked increase in breeding performance coincided with a significant decline in DDT and dieldrin residues in eggs, which suggests that toxic chemical contamination was responsible for the low hatching success between 1966 and 1970.


Sign in / Sign up

Export Citation Format

Share Document