scholarly journals In vitro and in silico approach of fungal growth inhibition by Trichoderma asperellum HbGT6-07 derived volatile organic compounds

2021 ◽  
pp. 103290
Author(s):  
Md. Kamaruzzaman ◽  
Md. Samiul Islam ◽  
Shafi Mahmud ◽  
Shakil Ahmed Polash ◽  
Razia Sultana ◽  
...  
2021 ◽  
Author(s):  
Md Kamaruzzaman ◽  
Md. Samiul Islam ◽  
Shakil Ahmed Polash ◽  
Razia Sultana

Abstract The species of Trichoderma are one of the most frequently used natural biocontrol agents to mitigate plant diseases and improve crop yields. In this study, sixteen Trichoderma spp. were isolated from soil of different regions of China. However, we identified Trichoderma. asperellum HbGT6-07 by initial fungal growth inhibition assay and molecular approach and also evaluated the antimicrobial effects. Tested 10% concentrated culture filtrate of T. asperellum HbGT6-07 inhibited 93 % of colony radial growth in Botrytis cinerea (B05.10) as well as 91 % of Sclerotinia sclerotiorum (A367). VOCs emitted from HbGT6-07 have antimicrobial properties against Botrytis cinerea (B05.10) and Sclerotinia sclerotiorum (A367). In in-vitro DwD method, The T. asperellum HbGT6-07 volatile organic compounds (VOCs) effectively reduced colonial diameter, mycelial growth rate and sclerotia production by two virulent fungal pathogens. The GC-MS analysis identified thirty-two VOCs derived from HbGT6-07 isolates. Moreover, the hyphal fragments of the T. asperellum HbGT6-07 demonstrated successful mycelia growth suppression of two virulent fungal agents by competing toward the invasion on oilseed rape leaves. The above findings indicated that T. asperellum HbGT6-07 could attain competitive progress via volatile antifungal compound production and comprehensive mycelial growth. This study provided an outlook of using T. asperellum HbGT6-07 to control virulent pathogens of B. cinerea and S. sclerotiorum.


2021 ◽  
Vol 7 (1) ◽  
pp. 46
Author(s):  
Warin Intana ◽  
Suchawadee Kheawleng ◽  
Anurag Sunpapao

Postharvest fruit rot caused by Fusarium incarnatum is a destructive postharvest disease of muskmelon (Cucumis melo). Biocontrol by antagonistic microorganisms is considered an alternative to synthetic fungicide application. The aim of this study was to investigate the mechanisms of action involved in the biocontrol of postharvest fruit rot in muskmelons by Trichoderma species. Seven Trichoderma spp. isolates were selected for in vitro testing against F. incarnatum in potato dextrose agar (PDA) by dual culture assay. In other relevant works, Trichoderma asperellum T76-14 showed a significantly higher percentage of inhibition (81%) than other isolates. Through the sealed plate method, volatile organic compounds (VOCs) emitted from T. asperellum T76-14 proved effective at inhibiting the fungal growth of F. incarnatum by 62.5%. Solid-phase microextraction GC/MS analysis revealed several VOCs emitted from T. asperellum T76-14, whereas the dominant compound was tentatively identified as phenylethyl alcohol (PEA). We have tested commercial volatile (PEA) against in vitro growth of F. incarnatum; the result showed PEA at a concentration of 1.5 mg mL−1 suppressed fungal growth with 56% inhibition. Both VOCs and PEA caused abnormal changes in the fungal mycelia. In vivo testing showed that the lesion size of muskmelons exposed to VOCs from T. asperellum T76-14 was significantly smaller than that of the control. Muskmelons exposed to VOCs from T. asperellum T76-14 showed no fruit rot after incubation at seven days compared to fruit rot in the control. This study demonstrated the ability of T. asperellum T76-14 to produce volatile antifungal compounds, showing that it can be a major mechanism involved in and responsible for the successful inhibition of F. incarnatum and control of postharvest fruit rot in muskmelons.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Toral ◽  
Miguel Rodríguez ◽  
Fernando Martínez-Checa ◽  
Alfredo Montaño ◽  
Amparo Cortés-Delgado ◽  
...  

Phytopathogenic fungal growth in postharvest fruits and vegetables is responsible for 20–25% of production losses. Volatile organic compounds (VOCs) have been gaining importance in the food industry as a safe and ecofriendly alternative to pesticides for combating these phytopathogenic fungi. In this study, we analysed the ability of some VOCs produced by strains of the genera Bacillus, Peribacillus, Pseudomonas, Psychrobacillus and Staphylococcus to inhibit the growth of Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, Fusarium solani, Monilinia fructicola, Monilinia laxa and Sclerotinia sclerotiorum, in vitro and in vivo. We analysed bacterial VOCs by using GC/MS and 87 volatile compounds were identified, in particular acetoin, acetic acid, 2,3-butanediol, isopentanol, dimethyl disulphide and isopentyl isobutanoate. In vitro growth inhibition assays and in vivo experiments using cherry fruits showed that the best producers of VOCs, Bacillus atrophaeus L193, Bacillus velezensis XT1 and Psychrobacillus vulpis Z8, exhibited the highest antifungal activity against B. cinerea, M. fructicola and M. laxa, which highlights the potential of these strains to control postharvest diseases. Transmission electron microscopy micrographs of bacterial VOC-treated fungi clearly showed antifungal activity which led to an intense degeneration of cellular components of mycelium and cell death.


2019 ◽  
Vol 1104 ◽  
pp. 256-261 ◽  
Author(s):  
Paweł Mochalski ◽  
Eva Diem ◽  
Karl Unterkofler ◽  
Axel Mündlein ◽  
Heinz Drexel ◽  
...  

Author(s):  
A. Di Francesco ◽  
J. Zajc ◽  
N. Gunde-Cimerman ◽  
E. Aprea ◽  
F. Gasperi ◽  
...  

Abstract Aureobasidium strains isolated from diverse unconventional environments belonging to the species A. pullulans, A. melanogenum, and A. subglaciale were evaluated for Volatile Organic Compounds (VOCs) production as a part of their modes of action against Botrytis cinerea of tomato and table grape. By in vitro assay, VOCs generated by the antagonists belonging to the species A. subglaciale showed the highest inhibition percentage of the pathogen mycelial growth (65.4%). In vivo tests were conducted with tomatoes and grapes artificially inoculated with B. cinerea conidial suspension, and exposed to VOCs emitted by the most efficient antagonists of each species (AP1, AM10, AS14) showing that VOCs of AP1 (A. pullulans) reduced the incidence by 67%, partially confirmed by the in vitro results. Conversely, on table grape, VOCs produced by all the strains did not control the fungal incidence but were only reducing the infection severity (< 44.4% by A. pullulans; < 30.5% by A. melanogenum, and A. subglaciale). Solid-phase microextraction (SPME) and subsequent gas chromatography coupled to mass spectrometry identified ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol as the most produced VOCs. However, there were differences in the amounts of produced VOCs as well as in their repertoire. The EC50 values of VOCs for reduction of mycelial growth of B. cinerea uncovered 3-methyl-1-butanol as the most effective compound. The study demonstrated that the production and the efficacy of VOCs by Aureobasidium could be directly related to the specific species and pathosystem and uncovers new possibilities for searching more efficient VOCs producing strains in unconventional habitats other than plants.


Metabolomics ◽  
2019 ◽  
Vol 15 (10) ◽  
Author(s):  
V. Longo ◽  
A. Forleo ◽  
S. Capone ◽  
E. Scoditti ◽  
M. A. Carluccio ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Kamila Schmidt ◽  
Ian Podmore

An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs). VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.


2013 ◽  
Vol 76 (11) ◽  
pp. 1879-1886 ◽  
Author(s):  
WAFA ROUISSI ◽  
LUISA UGOLINI ◽  
CAMILLA MARTINI ◽  
LUCA LAZZERI ◽  
MARTA MARI

The fungicidal effects of secondary metabolites produced by a strain of Penicillium expansum (R82) in culture filtrate and in a double petri dish assay were tested against one isolate each of Botrytis cinerea, Colletotrichum acutatum, and Monilinia laxa and six isolates of P. expansum, revealing inhibitory activity against every pathogen tested. The characterization of volatile organic compounds released by the R82 strain was performed by solid-phase microextraction–gas chromatographic techniques, and several compounds were detected, one of them identified as phenethyl alcohol (PEA). Synthetic PEA, tested in vitro on fungal pathogens, showed strong inhibition at a concentration of 1,230 μg/ml of airspace, and mycelium appeared more sensitive than conidia; nevertheless, at the concentration naturally emitted by the fungus (0.726 ± 0.16 μg/ml), commercial PEA did not show any antifungal activity. Therefore, a combined effect between different volatile organic compounds produced collectively by R82 can be hypothesized. This aspect suggests further investigation into the possibility of exploiting R82 as a nonchemical alternative in the control of some plant pathogenic fungi.


2014 ◽  
Vol 71 (1) ◽  
pp. 323-329 ◽  
Author(s):  
Paweł Mochalski ◽  
Markus Theurl ◽  
Andreas Sponring ◽  
Karl Unterkofler ◽  
Rudolf Kirchmair ◽  
...  

Abstract Gas chromatography with mass spectrometric detection combined with head-space needle trap extraction as the pre-concentration technique was applied to identify and quantify volatile organic compounds released or metabolised by human umbilical vein endothelial cells. Amongst the consumed species there were eight aldehydes (2-methyl 2-propenal, 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, n-hexanal, benzaldehyde, n-octanal and n-nonanal) and n-butyl acetate. Further eight compounds (ethyl acetate, ethyl propanoate, ethyl butyrate, 3-heptanone, 2-octanone, 2-nonanone, 2-methyl-5-(methylthio)-furan and toluene) were found to be emitted by the cells under study. Possible metabolic pathways leading to the uptake and release of these compounds by HUVEC are proposed and discussed. The uptake of aldehydes by endothelial cells questions the reliability of species from this chemical class as breath or blood markers of disease processes in human organism. The analysis of volatiles released or emitted by cell lines is shown to have a potential for the identification and assessment of enzymes activities and expression.


Sign in / Sign up

Export Citation Format

Share Document