scholarly journals Fiber type-specific immunostaining of the Na+,K+-ATPase subunit isoforms in skeletal muscle: Age-associated differential changes

Author(s):  
Lianqin Zhang ◽  
Keith J. Morris ◽  
Yuk-Chow Ng
1994 ◽  
Vol 11 (4) ◽  
pp. 255-262 ◽  
Author(s):  
Harinder S. Hundal ◽  
Diane L. Maxwell ◽  
Aamir Ahmed ◽  
Froogh Darakhshant ◽  
Yasuhide Mitsumotoi ◽  
...  

1993 ◽  
Vol 265 (2) ◽  
pp. E243-E251 ◽  
Author(s):  
Y. C. Ng ◽  
P. H. Tolerico ◽  
C. B. Book

In streptozotocin (STZ)-induced diabetic rats, activities of Na(+)-K(+)-ATPase and the Na pump have been shown to be altered. Cellular mechanisms underlying such changes remain unclear. The present studies examined by immunoblotting the levels of Na(+)-K(+)-ATPase subunit isoforms in heart, skeletal muscle, and kidney of diabetic rats. Effects of insulin treatment on these levels were also studied. In cardiac muscle, STZ-induced diabetes caused a marked decrease in alpha 2-levels, a moderate decrease in beta 1-levels, and no significant change in alpha 1-levels. Corresponding to these changes, Na(+)-K(+)-ATPase activity, estimated by K(+)-dependent p-nitrophenylphosphatase activity, also decreased. By contrast, there were significant increases in alpha 1- and alpha 2-levels in skeletal muscle and in alpha 1- and beta 1-levels in kidneys of diabetic rats. There was also a detectable, but not significant, increase in beta 1-levels in diabetic skeletal muscle. In kidney, the increase in subunit levels was associated with significantly increased Na(+)-K(+)-ATPase activity, whereas, in skeletal muscle, no increase in enzyme activity was observed. In diabetic rats, 7 days of insulin treatment (10 U/kg sc) partially reversed the decreased alpha 2- and beta 1-levels in diabetic cardiac muscle, without significant effect on alpha 1-levels. In skeletal muscle, insulin treatment also partially reversed the elevated alpha 1- and alpha 2-levels but was without significant effect on beta 1-levels. It is concluded that STZ-induced diabetes exerted isoform- and tissue-specific regulation of the Na(+)-K(+)-ATPase subunit isoforms.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 134 ◽  
pp. 110880 ◽  
Author(s):  
V.L. Wyckelsma ◽  
W. Lindkvist ◽  
T. Venckunas ◽  
M. Brazaitis ◽  
S. Kamandulis ◽  
...  

2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


2016 ◽  
Vol 35 (6) ◽  
pp. 1359-1365 ◽  
Author(s):  
Michael J. Toth ◽  
Damien M. Callahan ◽  
Mark S. Miller ◽  
Timothy W. Tourville ◽  
Sarah B. Hackett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document