scholarly journals In vivo bioluminescence imaging of acute promyelocytic leukemia cell trafficking and mobilization by AMD3100

2006 ◽  
Vol 12 (2) ◽  
pp. 18
Author(s):  
B. Nervi ◽  
M. Holt ◽  
M.P. Rettig ◽  
G. Bridger ◽  
T.J. Ley ◽  
...  
2017 ◽  
Vol 87 ◽  
pp. 39-47 ◽  
Author(s):  
Sylwia Michlewska ◽  
Maksim Ionov ◽  
Dzmitry Shcharbin ◽  
Marta Maroto-Díaz ◽  
Rafael Gomez Ramirez ◽  
...  

Blood ◽  
2002 ◽  
Vol 99 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Qi Zhu ◽  
Ji-Wang Zhang ◽  
Hai-Qing Zhu ◽  
Yu-Lei Shen ◽  
Maria Flexor ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterized by the specific chromosome translocation t(15;17) with promyelocytic leukemia-retinoic acid receptor-α (PML-RARA) fusion gene and the ability to undergo terminal differentiation as an effect of all-trans retinoic acid (ATRA). Recently, arsenic trioxide (As2O3) has been identified as an alternative therapy in patients with both ATRA-sensitive and ATRA-resistant APL. At the cellular level, As2O3 triggers apoptosis and a partial differentiation of APL cells in a dose-dependent manner; both effects are observed in vivo among patients with APL and APL animal models. To further explore the mechanism of As2O3-induced differentiation, the combined effects of arsenic and a number of other differentiation inducers on APL cell lines (NB4 and NB4-R1) and some fresh APL cells were examined. The data show that a strong synergy exists between a low concentration of As2O3 (0.25 μM) and the cyclic adenosine monophosphate (cAMP) analogue, 8-CPT-cAMP, in fully inducing differentiation of NB4, NB4-R1, and fresh APL cells. Furthermore, cAMP facilitated the degradation of As2O3-mediated fusion protein PML-RARα, a process considered to play a key role in overcoming the differentiation arrest of APL cells. On the other hand, cAMP could significantly inhibit cell growth by modulating several major players in G1/S transition regulation. Interestingly, H89, an antagonist of protein kinase A, could block the differentiation-inducing effect of As2O3potentiated by cAMP. These results thus support the existence of a novel signaling cross-talk for APL maturation, which may deepen understanding of As2O3-induced differentiation in vivo, and thus furnish insights for new therapeutic strategies.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1133-1140 ◽  
Author(s):  
Christian Kardinal ◽  
Marc Dangers ◽  
Angelika Kardinal ◽  
Alexandra Koch ◽  
Dominique Tobias Brandt ◽  
...  

AbstractWe have investigated the role of tyrosine phosphorylation of the cyclin-dependent kinase (cdk) inhibitor p27Kip1 using the acute promyelocytic leukemia cell line NB4 together with granulocyte colony-stimulating factor (G-CSF). Short-term G-CSF stimulation resulted in a rapid tyrosine dephosphorylation of p27Kip1 accompanied by a change in its binding preferences to cdks. On G-CSF stimulation, p27Kip1 dissociated from cdk4 and associated with cdk2. Binding assays with recombinant p27Kip1 confirmed that tyrosine-phosphorylated p27Kip1 preferentially bound to cdk4, whereas unphosphorylated protein preferentially associated with cdk2. In addition, studies with p27Kip1 point mutations revealed a decisive role of Tyr88 and Tyr89 in binding to cdk4. Furthermore, phosphorylation of Tyr88 and Tyr89 was accompanied by strong nuclear translocation of p27Kip1. Taken together, this report provides the first evidence that tyrosine phosphorylation of p27Kip1 plays a crucial role in binding to cdks and its subcellular localization. Moreover, both effects are mediated by application of G-CSF.


Sign in / Sign up

Export Citation Format

Share Document