Modulated mesenchymal stromal cells improve skin wound healing

Biologicals ◽  
2020 ◽  
Vol 67 ◽  
pp. 1-8
Author(s):  
Ausra Liubaviciute ◽  
Tatjana Ivaskiene ◽  
Gene Biziuleviciene
2019 ◽  
Vol 7 ◽  
Author(s):  
Peng Hu ◽  
Qinxin Yang ◽  
Qi Wang ◽  
Chenshuo Shi ◽  
Dali Wang ◽  
...  

Abstact Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.


2019 ◽  
Vol 13 (5) ◽  
pp. 729-741 ◽  
Author(s):  
Helena Debiazi Zomer ◽  
Gisele Kristina dos Santos Varela ◽  
Priscilla Barros Delben ◽  
Diana Heck ◽  
Talita da Silva Jeremias ◽  
...  

2008 ◽  
Vol 13 (6) ◽  
pp. 064036 ◽  
Author(s):  
Hirokazu Inoue ◽  
Takashi Murakami ◽  
Takashi Ajiki ◽  
Mayumi Hara ◽  
Yuichi Hoshino ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Michael S. Hu ◽  
Mimi R. Borrelli ◽  
H. Peter Lorenz ◽  
Michael T. Longaker ◽  
Derrick C. Wan

Cutaneous wound repair is a highly coordinated cascade of cellular responses to injury which restores the epidermal integrity and its barrier functions. Even under optimal healing conditions, normal wound repair of adult human skin is imperfect and delayed healing and scarring are frequent occurrences. Dysregulated wound healing is a major concern for global healthcare, and, given the rise in diabetic and aging populations, this medicoeconomic disease burden will continue to rise. Therapies to reliably improve nonhealing wounds and reduce scarring are currently unavailable. Mesenchymal stromal cells (MSCs) have emerged as a powerful technique to improve skin wound healing. Their differentiation potential, ease of harvest, low immunogenicity, and integral role in native wound healing physiology make MSCs an attractive therapeutic remedy. MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue formation, which result in accelerated wound closure. MSCs encourage a regenerative, rather than fibrotic, wound healing microenvironment. Recent translational research efforts using modern bioengineering approaches have made progress in creating novel techniques for stromal cell delivery into healing wounds. This paper discusses experimental applications of various stromal cells to promote wound healing and discusses the novel methods used to increase MSC delivery and efficacy.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Andrea da Fonseca Ferreira ◽  
Pricila da Silva Cunha ◽  
Virgínia Mendes Carregal ◽  
Priscila de Cássia da Silva ◽  
Marcelo Coutinho de Miranda ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are promising tools in cell therapy. They secrete extracellular vesicles (EVs) that carry different classes of molecules that can promote skin repair, but the mechanisms are poorly understood. Skin wound healing is a complex process that requires the activity of several signaling pathways and cell types, including keratinocytes and fibroblasts. In this study, we explored whether adipose tissue MSC-derived EVs could accelerate migration and proliferation of keratinocytes and fibroblasts, activate the AKT pathway, and promote wound healing in vivo. Furthermore, we evaluated if EV effects are miR-205 dependent. We found that MSC EVs had an average diameter of 135 nm. Keratinocytes and fibroblasts exposed to EVs exhibited higher levels of proliferation, migration, and AKT activation. Topical administration of EVs accelerated skin wound closure. Knockdown of miR-205 decreased AKT phosphorylation in fibroblasts and keratinocytes, whereas migration was decreased only in keratinocytes. Moreover, knockdown of miR-205 failed to inhibit AKT phosphorylation in fibroblasts and keratinocytes exposed to EVs. About the mechanism of EV effects, we found that incubation with EVs prevented inhibition of AKT activation by miR-205 knockdown, suggesting that EVs activate AKT independently of miR-205. In conclusion, we demonstrated that EVs are a promising tool for wound healing.


2009 ◽  
Vol 14 (6b) ◽  
pp. 1594-1604 ◽  
Author(s):  
Yannick Landry ◽  
Oanh Lê ◽  
Kimberly A. Mace ◽  
Terry E. Restivo ◽  
Christian M. Beauséjour

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Giselle Ramos-Gonzalez ◽  
Olga Wittig ◽  
Dylana Diaz-Solano ◽  
Lianeth Salazar ◽  
Carlos Ayala-Grosso ◽  
...  

Abstract Background: Skin wounds continue to be a global health problem. Several cellular therapy protocols have been used to improve and accelerate skin wound healing. Here, we evaluated the effect of transplantation of mesenchymal stromal cells (MSC) on the wound re-epithelialization process and its possible relationship with the presence of epithelial progenitor cells (EPC) and the expression of growth factors. Methods: An experimental wound model was developed in C57BL/6 mice. Human MSCs seeded on collagen membranes (CM) were implanted on wounds. As controls, animals with wounds without treatment or treated with CM were established. Histological and immunohistochemical (IH) studies were performed at day 3 post-treatment to detect early skin wound changes associated with the presence of EPC expressing Lgr6 and CD34 markers and the expression of keratinocyte growth factor (KGF) and basic fibroblast growth factor (bFGF). Results: MSC transplantation enhanced skin wound re-epithelialization, as compared with controls. It was associated with an increase in Lgr6+ and CD34+ cells and the expression of KGF and bFGF in the wound bed. Conclusion: Our results show that cutaneous wound healing induced by MSC is associated with an increase in EPC and growth factors. These preclinical results support the possible clinical use of MSC to treat cutaneous wounds.


Sign in / Sign up

Export Citation Format

Share Document