Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02

2010 ◽  
Vol 101 (11) ◽  
pp. 4111-4119 ◽  
Author(s):  
Hao Fang ◽  
Chen Zhao ◽  
Xiang-Yang Song
2021 ◽  
Author(s):  
Hui Zhang ◽  
Junhui Wu

Abstract To maximize fermentable sugars production, response surface methodology (RSM) was adopted to optimize pretreatment and enzymatic hydrolysis of wheat straw powder (WSP) using the crude cellulases preparation containing xylanases from Aspergillus niger HQ-1. Factors of pretreatment including sodium hydroxide concentration, pretreatment time and temperature were found to have significant effects on sugars production. Results indicated that WSP with particle size 0.3 mm should be pretreated using 1.8% (w/v) sodium hydroxide solution with 25.0% (w/v) of solid loading at 94.0°C for 46.0 min and the optimized pretreatment conditions could result in 90.9% of cellulose recovery, 54.6% of hemicellulose recovery and 72.7% of lignin removal, respectively. Furthermore, variables of enzymatic hydrolysis including enzyme loading, biomass loading and reaction time were proved to have significant effects on sugars yields. After hydrolysis at 50°C for 44.8 h with 7.1% (w/v) of biomass loading, 8.1 FPU/g of enzyme loading and 0.2% (w/v) of Tween-80, maximum yields of reducing sugar (632.92 mg/g) and xylose (149.83 mg/g) could be obtained, respectively. In addition, holocellulose and hemicellulose conversion were 81.6% and 80.0%, respectively. To the best of our knowledge, this is the first report about systematic optimization of sodium hydroxide pretreatment and enzymatic hydrolysis of WSP using RSM.


RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56239-56246 ◽  
Author(s):  
Chen Zhao ◽  
Lu Deng ◽  
Hao Fang ◽  
Shaolin Chen

Mixed culture ofTrichoderma reeseiandAspergillus nigerwas employed to accomplish on-site cellulase production where cellulases were applied directly to the enzymatic hydrolysis of pretreated corn stover.


Sign in / Sign up

Export Citation Format

Share Document