scholarly journals Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond

2018 ◽  
Vol 255 ◽  
pp. 354-358 ◽  
Author(s):  
David Marín ◽  
Esther Posadas ◽  
Patricia Cano ◽  
Víctor Pérez ◽  
Raquel Lebrero ◽  
...  
2017 ◽  
Vol 232 ◽  
pp. 133-141 ◽  
Author(s):  
Esther Posadas ◽  
David Marín ◽  
Saúl Blanco ◽  
Raquel Lebrero ◽  
Raúl Muñoz

Fuel ◽  
2020 ◽  
Vol 275 ◽  
pp. 117999 ◽  
Author(s):  
David Marín ◽  
Alessandro A. Carmona-Martínez ◽  
Raquel Lebrero ◽  
Raúl Muñoz

2018 ◽  
Vol 263 ◽  
pp. 58-66 ◽  
Author(s):  
David Marín ◽  
Esther Posadas ◽  
Patricia Cano ◽  
Victor Pérez ◽  
Saúl Blanco ◽  
...  

2000 ◽  
Vol 42 (10-11) ◽  
pp. 371-374 ◽  
Author(s):  
S. Araki ◽  
J. M. González ◽  
E. de Luis ◽  
E. Bécares

The viability of Parascaris equorum eggs was studied in two experimental pilot-scale high-rate algal ponds (HRAPs) working in parallel with 4 and 10 days hydraulic retention time respectively. Semi-permeable bags of cellulose (15000 daltons pore size) were used to study the effect of physico-chemical conditions on the survival of these helminth eggs. Three thousand eggs were used in each bag. Replicates of these bags were submerged for 4 and 10 days in the HRAPs and egg viability was compared with that in control bags submerged in sterile water. After 4 days exposure, 60% reduction in viability was achieved, reaching 90% after 10 days, much higher than the 16% and 25% found in the control bags for 4 and 10 days respectively. Ionic conditions of the HRAP may have been responsible for up to 50–60% of the egg mortality, suggesting that mortality due to the ionic environment could be more important than physical retention and other potential removal factors.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


2018 ◽  
Vol 78 (1) ◽  
pp. 49-56
Author(s):  
I. A. Sánchez ◽  
R. K. X. Bastos ◽  
E. A. T. Lana

Abstract In two pilot-scale experiments, fingerlings and juvenile of tilapia were reared in high rate algal pond (HRAP) effluent. The combination of three different total ammonia nitrogen (TAN) surface loading rates (SLR1 = 0.6, SLR2 = 1.2; SLR3 = 2.4 kg TAN·ha−1·d−1) and two fish stocking densities (D1 = 4 and D2 = 8 fish per tank) was evaluated during two 12-week experiments. Fingerlings total weight gain varied from 4.9 to 18.9 g, with the highest value (equivalent to 0.225 g·d−1) being recorded in SLR2-D1 treatment; however, high mortality (up to 67%) was recorded, probably due to sensitivity to ammonia and wide daily temperature variations. At lower water temperatures, juvenile tilapia showed no mortality, but very low weight gain. The fish rearing tanks worked as wastewater polishing units, adding the following approximate average removal figures on top of those achieved at the HRAP: 63% of total Kjeldahl nitrogen; 54% of ammonia nitrogen; 42% of total phosphorus; 37% of chemical oxygen demand; 1.1 log units of Escherichia coli.


2003 ◽  
Vol 7 (2) ◽  
pp. 77-87 ◽  
Author(s):  
Nikola Chemyavsky

The importance of coal pyrolysis studies for the development of energy technologies is evident, since pvrolysis is the first stage of any process of coal thermal conversion. In combustion, pyrolysis determines conditions of coal ignition and the rate of char after-burning, in gasification, pyrolysis determines total yield of gasification products. It must be noted that in modern energy technologies pyrolysis occurs at high late of coal particle heating (=10 K/s for different fluidized bed, or FB-technologies) or super-high-rate (>10**5 K/s for entrained-flow gasification), and in some of them at high pressure. In CETI during last 12 years the detailed study of pyrolysis in FB laboratory-scale PYROLYSIS-D plant and entramed-flow pilot-scale GSP-01 plant, was carried out. In this paper main results of mentioned investigations are given. Kinetic constants for bituminous coals and anthracite high heating rates in entrained flow for high temperatures (>1500 ?C and >1900 ?C), and in fluidized bed conditions in temperature range 972-1273 K. In order to describe data obtained in fluidized bed conditions, G--model based method of calculation of devolatization dynamics was suited to FB heating conditions. Calculated and experimental kinetic data are in good agreement. The result proves that at FB-pvrolysis conditions intrinsic mass-transfer limitations are negligible and devolatilization is really kinetic-controlled.


2021 ◽  
Author(s):  
Valentin Wucher ◽  
Reza Sodaei ◽  
Raziel Amador ◽  
Manuel Irimia ◽  
Roderic Guigó

AbstractCircadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. For most tissues, we found little overlap between genes changing expression during day-night and among seasons. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways and were enriched among genes associated with SARS-CoV-2 infection. Furthermore, they unveiled cytoarchitectural changes in brain subregions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document