Assessment of biogas production and microbial ecology in a high solid anaerobic digestion of major California food processing residues

2019 ◽  
Vol 5 ◽  
pp. 1-11 ◽  
Author(s):  
Yigal Achmon ◽  
Joshua T. Claypool ◽  
Sara Pace ◽  
Blake A. Simmons ◽  
Steven W. Singer ◽  
...  
2007 ◽  
pp. 291-296
Author(s):  
Sunil Kumar ◽  
Somnath Mukherjee ◽  
Sukumar Devotta

Anaerobic digestion (AD) is viewed as an attractive method for waste stabilization prior tolandfills as pre-treatment to reduce significant pollution load to the environment Optimizinganaerobic digestion process aims to maximize organic waste conversion to biogas at shortdigestion period, The optimization of high solid concentration of MSW in a laboratory scalereactor was carried out to know the maximum biogas production yield,This paper presents the findings of the study on high solid AD process in single whichinvolves enhanced pre-stage (hydrolysis and acidification) and methane phase,


2019 ◽  
Author(s):  
Anna Christine Trego ◽  
Evan Galvin ◽  
Conor Sweeney ◽  
Sinéad Dunning ◽  
Cillian Murphy ◽  
...  

AbstractMethanogenic sludge granules are densely packed, small (diameter, approx. 0.5-2.0 mm) spherical biofilms found in anaerobic digesters used to treat industrial wastewaters, where they underpin efficient organic waste conversion and biogas production. A single digester contains millions of individual granules, each of which is a highly-organised biofilm comprised of a complex consortium of likely billions of cells from across thousands of species – but not all granules are identical. Whilst each granule theoretically houses representative microorganisms from all of the trophic groups implicated in the successive and interdependent reactions of the anaerobic digestion process, parallel granules function side-by-side in digesters to provide a ‘meta-organism’ of sorts. Granules from a full-scale bioreactor were size-separated into small, medium and large granules. Laboratory-scale bioreactors were operated using only small (0.6–1 mm), medium (1–1.4 mm) or large (1.4–1.8 mm) granules, or unfractionated (naturally distributed) sludge. After >50 days of operation, the granule size distribution in each of the small, medium and large bioreactor types had diversified beyond – to both bigger and smaller than – the size fraction used for inoculation. ‘New’ granules were analysed by studying community structure based on high-throughput 16S rRNA gene sequencing.Methanobacterium,Aminobacterium,PropionibacteriaceaeandDesulfovibriorepresented the majority of the community in new granules. H2-using, and not acetoclastic, methanogens appeared more important, and were associated with abundant syntrophic bacteria. Multivariate integration analyses identified distinct discriminant taxa responsible for shaping the microbial communities in different-sized granules, and along with alpha diversity data, indicated a possible biofilm life cycle.ImportanceMethanogenic granules are spherical biofilms found in the built environment, where despite their importance for anaerobic digestion of wastewater in bioreactors, little is understood about the fate of granules across their entire life. Information on exactly how, and at what rates, methanogenic granules develop will be important for more precise and innovative management of environmental biotechnologies. Microbial aggregates also spark interest as subjects in which to study fundamental concepts from microbial ecology, including immigration and species sorting affecting the assembly of microbial communities. This experiment is the first, of which we are aware, to compartmentalise methanogenic granules into discrete, size-resolved fractions, which were then used to separately start up bioreactors to investigate the granule life cycle. The evidence, and extent, ofde novogranule growth, and the identification of key microorganisms shaping new granules at different life-cycle stages, is important for environmental engineering and microbial ecology.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3571 ◽  
Author(s):  
Li ◽  
Huang ◽  
Liu ◽  
Huang ◽  
Maurer ◽  
...  

Effects of salt on anaerobic digestion are dosage-dependent. As salt is a widely used condiment in food processing, effects of salt are bound to be considered when food waste is digested. In this study, salt addition effects (0, 2, 4, 6, 9, 12 g∙L−1) on biogas and methane yields and kinetics of biogas production were researched. Meanwhile, component characteristics (food waste featured in carbohydrate, protein and fat, respectively) and fermentation concentrations (5 and 8 gVS∙L−1) were also taken into consideration. Results showed that 2–4 g∙L−1 salt addition was the optimal addition dosage for AD systems as they not only have the maximum biogas and methane yields, but also the maximum vs. removal in most cases. Also, according to the results of a modified Gompertz model, which is used to predict biogas and methane production rates, suitable salt addition can accelerate biogas production, improving the maximum biogas production rate (Rmax). Factorial design (2 × 2) proved that interaction of salt and fermentation concentrations was significant for food waste featured with carbohydrate and with protein (p <0.05). High salt addition and fermentation concentration can break the AD system when the feeding material was food waste featured with carbohydrate, but for food waste featured with protein, interaction of fermentation concentrations and salt addition can alleviate inhibition degrees.


2021 ◽  
pp. 100685
Author(s):  
Wisarut Tukanghan ◽  
Sebastian Hupfauf ◽  
María Gómez-Brandón ◽  
Heribert Insam ◽  
Willi Salvenmoser ◽  
...  

2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


Sign in / Sign up

Export Citation Format

Share Document