scholarly journals Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability

2012 ◽  
Vol 20 (10) ◽  
pp. 3255-3262 ◽  
Author(s):  
Michael S. Scherman ◽  
Elton J. North ◽  
Victoria Jones ◽  
Tamara N. Hess ◽  
Anna E. Grzegorzewicz ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


LWT ◽  
2021 ◽  
Vol 152 ◽  
pp. 112380
Author(s):  
Jingyuan Liu ◽  
Yangling Wan ◽  
Liuyang Ren ◽  
Mengdi Li ◽  
Ying Lv ◽  
...  

2019 ◽  
Vol 7 (4) ◽  
pp. 630-639 ◽  
Author(s):  
Lai C. ◽  
S. J. Zhang ◽  
L. Y. Sheng ◽  
T. F. Xi

The aim of this study was to investigate the influence of poly(lactide-co-glycolide) (PLGA) and polydopamine (PDA) as coating materials on the tensile strength, surface performance, in vitro cell behavior and the in vivo material-tissue reaction of bacterial cellulose (BC) membranes.


10.12737/2753 ◽  
2013 ◽  
Vol 20 (4) ◽  
pp. 160-165
Author(s):  
Сергиевич ◽  
A. Sergievich ◽  
Чайка ◽  
Vladimir Chayka ◽  
Голохваст ◽  
...  

There are both in the domestic and the world science a discussion about the biological activity of water-insoluble solid microparticles technogenous and natural. These interactions are studied in the context of the professional pathology, hygiene and nanotoxicology. The purpose of this research was to study the mechanisms of action of particles of natural minerals of various sizes on biological systems. The paper is based on the applied modern methods which allow to determine the degree of interaction of microelements with the functional systems of the organism. Analysis of the results showed that the application of these methods has a number of shortcomings in the experiments in vivo and in vitro, associated with the physical and chemical features of zeolites. It is established that under cultivation in 6- and 24-hole tablets, the zeolite in a dose of 50 mg/ml covers all the cells attached to the glass. In the fields of view of the cells are practically invisible. Thus, an assessment of toxic effects or functional condition of the cells is not possible. Zeolite being water-insoluble compound wich is not subjected to the pipetting. At the delete zeolite of culture, there is practically full elimination of cells from the hole. Accumulation of the primary information about the biological effects of nano - and microparticles is extremely important. This allows the authors to make some conclusions, but the decision of a question on the mechanism of biological activity, especially the prediction of some properties of particles without the study of physical-chemical properties of the particles isn´t possible.


1999 ◽  
Vol 193 (1) ◽  
pp. 49-55 ◽  
Author(s):  
M.Vitória L.B Bentley ◽  
Juliana M Marchetti ◽  
Nágila Ricardo ◽  
Ziad Ali-Abi ◽  
John H Collett

Sign in / Sign up

Export Citation Format

Share Document