scholarly journals Mean square solution of Bessel differential equation with uncertainties

2017 ◽  
Vol 309 ◽  
pp. 383-395 ◽  
Author(s):  
J.-C. Cortés ◽  
L. Jódar ◽  
L. Villafuerte
2018 ◽  
Vol 20 (04) ◽  
pp. 1750038
Author(s):  
Andrei Minchenko ◽  
Alexey Ovchinnikov

Motivated by developing algorithms that decide hypertranscendence of solutions of extensions of the Bessel differential equation, algorithms computing the unipotent radical of a parameterized differential Galois group have been recently developed. Extensions of Bessel’s equation, such as the Lommel equation, can be viewed as homogeneous parameterized linear differential equations of the third order. In this paper, we give the first known algorithm that calculates the differential Galois group of a third-order parameterized linear differential equation.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Daniel Eduardo Sánchez ◽  
Vinícius Francisco Wasques ◽  
Estevão Esmi ◽  
Laécio Carvalho de Barros

2020 ◽  
Vol 52 (3) ◽  
pp. 735-771
Author(s):  
Christel Geiss ◽  
Céline Labart ◽  
Antti Luoto

AbstractLet (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk $B^n$ from the underlying Brownian motion B by Skorokhod embedding, one can show $L_2$-convergence of the corresponding solutions $(Y^n,Z^n)$ to $(Y, Z).$ We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in $C^{2,\alpha}$. The proof relies on an approximative representation of $Z^n$ and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by probabilistic methods.


2015 ◽  
Vol 18 (2) ◽  
pp. 14-20
Author(s):  
Dung Anh Tran ◽  
Hang Thi Chu ◽  
Long Ta Bui

The Bessel differential equation with the Bessel function of solution has been applied. Bessel functions are the canonical solutions of Bessel's differential equation. Bessel's equation arises when finding separable solutions to Laplace's equation in cylindrical or spherical coordinates. Bessel functions are important for many problems of advection–diffusion progress and wave propagation. In this paper, authors present the analytic solutions of the atmospheric advection-diffusion equation with the stratification of the boundary condition. The solution has been found by applied the separation of variable method and Bessel’s equation.


Sign in / Sign up

Export Citation Format

Share Document