scholarly journals Positive solutions of singular three-point boundary value problems for the One-dimensional p-Laplacian

2004 ◽  
Vol 48 (5-6) ◽  
pp. 913-925 ◽  
Author(s):  
Bing Liu
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Ruyun Ma ◽  
Chunjie Xie ◽  
Abubaker Ahmed

We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional p-Laplacian u′t|p−2u′t′+λfut=0, t∈0,1, u(0)=u(1)=0, where p∈(1,2], λ∈(0,∞) is a parameter, f∈C1([0,r),[0,∞)) for some constant r>0, f(s)>0 in (0,r), and lims→r-(r-s)p-1f(s)=+∞.


2011 ◽  
Vol 27 (2) ◽  
pp. 239-248
Author(s):  
YUJI LIU ◽  

This paper is concerned with the integral type boundary value problems of the second order singular differential equations with one-dimensional p-Laplacian. Sufficient conditions to guarantee the existence of at least three positive solutions are established. An example is presented to illustrate the main results. The emphasis is put on the one-dimensional p-Laplacian term [ρ(t)Φ(x 0 (t))]0 involved with the function ρ, which makes the solutions un-concave. Furthermore, f, g, h and ρ may be singular at t = 0 or t = 1.


Sign in / Sign up

Export Citation Format

Share Document