Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors

Carbon ◽  
2019 ◽  
Vol 154 ◽  
pp. 169-177 ◽  
Author(s):  
Wei Gong ◽  
Bunshi Fugetsu ◽  
Zhipeng Wang ◽  
Takayuki Ueki ◽  
Ichiro Sakata ◽  
...  
2016 ◽  
Vol 9 (6) ◽  
pp. 2152-2158 ◽  
Author(s):  
Joo Hyeong Lee ◽  
Chong S. Yoon ◽  
Jang-Yeon Hwang ◽  
Sung-Jin Kim ◽  
Filippo Maglia ◽  
...  

A Li-rechargeable battery system based on state-of-the-art cathode and anode technologies demonstrated high energy density, meeting demands for vehicle application.


2010 ◽  
Vol 25 (8) ◽  
pp. 1636-1644 ◽  
Author(s):  
Brian J. Landi ◽  
Cory D. Cress ◽  
Ryne P. Raffaelle

Recent advancements using carbon nanotube electrodes show the ability for multifunctionality as a lithium-ion storage material and as an electrically conductive support for other high capacity materials like silicon or germanium. Experimental data show that replacement of conventional anode designs, which use graphite composites coated on copper foil, with a freestanding silicon-single-walled carbon nanotube (SWCNT) anode, can increase the usable anode capacity by up to 20 times. In this work, a series of calculations were performed to elucidate the relative improvement in battery energy density for such anodes paired with conventional LiCoO2, LiFePO4, and LiNiCoAlO2 cathodes. Results for theoretical flat plate prismatic batteries comprising freestanding silicon-SWCNT anodes with conventional cathodes show energy densities of 275 Wh/kg and 600 Wh/L to be theoretically achievable; this is a 50% improvement over today's commercial cells.


2017 ◽  
Vol 224 ◽  
pp. 251-259 ◽  
Author(s):  
Xiaoqiao Chen ◽  
Yunmin Zhu ◽  
Bin Li ◽  
Pengbo Hong ◽  
Xueyi Luo ◽  
...  

Energy ◽  
2021 ◽  
pp. 122751
Author(s):  
Samhita Pappu ◽  
Tata N. Rao ◽  
Surendra K. Martha ◽  
V. Sarada Bulusu

Sign in / Sign up

Export Citation Format

Share Document