Mechanical reinforcement of room-temperature-vulcanized silicone rubber using modified cellulose nanocrystals as cross-linker and nanofiller

2020 ◽  
Vol 229 ◽  
pp. 115509 ◽  
Author(s):  
Xinxin Yang ◽  
Zhaoshuang Li ◽  
Zhaoyu Jiang ◽  
Siheng Wang ◽  
He Liu ◽  
...  
RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 12517-12525 ◽  
Author(s):  
Xibing Zhan ◽  
Xiqing Cai ◽  
Junying Zhang

A novel cross-linker polymethyl(ketoxime)siloxane was synthesized and then was cured with hydroxyl-terminated polydimethylsiloxane matrix to fabricate a series of novel RTV silicone rubber. Their properties was comparatively investigated.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1142 ◽  
Author(s):  
Jianye Ji ◽  
Xin Ge ◽  
Xiaoyan Pang ◽  
Ruoling Liu ◽  
Shuyi Wen ◽  
...  

Methoxyl-capped MQ silicone resin (MMQ) was first synthesized by the hydrosilylation of vinyl-containing MQ silicone resin and trimethoxysilane and then used in condensed room-temperature vulcanized (RTV) silicone rubber as a self-reinforced cross-linker. Results show that modified silicone rubber exhibits good light transmission. Compared with unmodified silicone rubber, the hardness, tensile strength and elongation of MMQ at the break are increased by 26.4 A, 2.68 MPa and 65.1%, respectively. In addition, the characteristic temperature of 10% mass loss is delayed from 353.5 °C to 477.1 °C, the temperature at maximum degradation rate is also delayed from 408.9 °C to 528.4 °C and the residual mass left at 800 °C is increased from 1.2% to 27.7%. These improved properties are assigned to the synergistic effect of the rigid structure of MMQ, the formation of a dense cross-linking structure in polymers and the uniform distribution of MMQ cross-linking agent in RTV silicone rubber.


Cellulose ◽  
2021 ◽  
Author(s):  
Mohammed Majdoub ◽  
Younes Essamlali ◽  
Othmane Amadine ◽  
Ikram Ganetri ◽  
Anass Hafnaoui ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1550
Author(s):  
Vineet Kumar ◽  
Anuj Kumar ◽  
Minseok Song ◽  
Dong-Joo Lee ◽  
Sung-Soo Han ◽  
...  

The increasing demand for polymer composites with novel or improved properties requires novel fillers. To meet the challenges posed, nanofillers such as graphene, carbon nanotubes, and titanium dioxide (TiO2) have been used. In the present work, few-layer graphene (FLG) and iron oxide (Fe3O4) or TiO2 were used as fillers in a room-temperature-vulcanized (RTV) silicone rubber (SR) matrix. Composites were prepared by mixing RTV-SR with nanofillers and then kept for vulcanization at room temperature for 24 h. The RTV-SR composites obtained were characterized with respect to their mechanical, actuation, and magnetic properties. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to investigate the composite raw materials and finished composites, and X-ray photoelectron spectroscopy (XPS) analysis was used to study composite surface elemental compositions. Results showed that mechanical properties were improved by adding fillers, and actuation displacements were dependent on the type of nanofiller used and the applied voltage. Magnetic stress-relaxation also increased with filler amount and stress-relaxation rates decreased when a magnetic field was applied parallel to the deformation axes. Thus, this study showed that the inclusion of iron oxide (Fe3O4) or TiO2 fillers in RTV-SR improves mechanical, actuation, and magnetic properties.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 773 ◽  
Author(s):  
Yuqing Qian ◽  
Xiaowei An ◽  
Xiaofei Huang ◽  
Xiangqiang Pan ◽  
Jian Zhu ◽  
...  

Dynamic structures containing polymers can behave as thermosets at room temperature while maintaining good mechanical properties, showing good reprocessability, repairability, and recyclability. In this work, alkyl diselenide is effectively used as a dynamic cross-linker for the design of self-healing poly(urea–urethane) elastomers, which show quantitative healing efficiency at room temperature, without the need for any catalysts or external interventions. Due to the combined action of the urea bond and amide bond, the material has better mechanical properties. We also compared the self-healing effect of alkyl diselenide-based polyurethanes and alkyl disulfide-based polyurethanes. The alkyl diselenide has been incorporated into polyurethane networks using a para-substituted amine diphenyl alkyl diselenide. The resulting materials not only exhibit faster self-healing properties than the corresponding disulfide-based materials, but also show the ability to be processed at temperatures as low as 60 °C.


Sign in / Sign up

Export Citation Format

Share Document