Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber

2021 ◽  
pp. 118954
Author(s):  
Ge Zhu ◽  
Alain Dufresne
2014 ◽  
Vol 117 (1) ◽  
pp. 387-392 ◽  
Author(s):  
M. J. Silva ◽  
A. O. Sanches ◽  
E. S. Medeiros ◽  
L. H. C. Mattoso ◽  
C. M. McMahan ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Kazi Md Zakir Hossain ◽  
Nashid Sharif ◽  
N. C. Dafader ◽  
M. E. Haque ◽  
A. M. Sarwaruddin Chowdhury

A range of radiation vulcanised natural rubber latex (RVNRL) films were prepared using various concentrations of aqueous extracts of mature Diospyros peregrina fruit, which acted as a cross-linking agent. The surface of the RVNRL films exhibited an aggregated morphology of the rubber hydrocarbon with increasing roughness due to increasing fruit extract contents in the latex. An improvement in tensile strength, tensile modulus, and storage modulus of RVNRL films was observed with the addition of fruit extracts compared to the control film due to their cross-linking effect. The glass transition (Tg) temperature of all the RVNRL films was found to be at around −61.5°C. The films were also observed to be thermally stable up to 325°C, while the maximum decomposition temperature appeared at around 375°C. The incorporation of fruit extracts further revealed a significant influence on increasing the crystallinity, gel content, and physical cross-link density of the RVNRL films.


1951 ◽  
Vol 24 (4) ◽  
pp. 777-786
Author(s):  
E. H. Farmer ◽  
C. G. Moore

Abstract The high degree of dehydrogenation effected by tert.-butoxy radicals at the α-methylenic groups of olefins enables these radicals to be used for the carbon-to-carbon cross-linking of unsaturated carbon chains, and especially of the polyisoprenic chains of natural rubber. Such cross-linking amounts to a vulcanization process in which the connecting links between chain molecules are just C—C bonds, which may be expected to have appropriate attributes. An examination has first been made of the cross-linking produced by tert.- butoxy radicals (from di-tert.-butyl peroxide) at 140° between the short iso-prenic chains in 1-methylcyclohexene, 4-methylhept-3-ene, 2,6-dimethylocta-2, 6-diene, and digeranyl. Cross-linking proceeds efficiently in each case, and the points of union in these isoprene units which become directly joined are not confined to original α-methylenic carbon atoms. Where the reagent radicals are in considerable deficit, e.g., one per two or three of the isoprene units present, those olefin molecules which are attacked become linked together mostly by single unions to form aggregates containing two, three or four molecules; but in the tetraisoprenic olefins the extent to which more than one union is formed between some of the directly linked molecules becomes appreciable. In natural rubber, cross-linking occurs smoothly and to nearly the full extent corresponding to the (in practice restricted) proportion of peroxidic reagent employed. Good vulcanizates can be so obtained in which the tensile stength is found to increase towards a maximum and then to decline rapidly as the degree of cross-linking steadily increases. Thus to obtain vulcanizates of the optimum physical characteristics, the degree of cross-linking must be suitably chosen. The role of the peroxidic reagent is almost entirely non-additive and non-degradative.


1972 ◽  
Vol 45 (5) ◽  
pp. 1388-1402 ◽  
Author(s):  
L. A. Wood ◽  
G. W. Bullman ◽  
G. E. Decker

Abstract Natural rubber mixed with varying amounts of dicumyl peroxide are crosslinked by heating 120 min at 149° C. The quantitative measure of cross- linking was taken as the amount fp of decomposed dicumyl peroxide, the product of p, the number of parts added per hundred of rubber and f the fraction decomposed during the time of cure. The shear creep modulus G was calculated from measurements of the indentation of a flat rubber sheet by a rigid sphere. The glass transition temperature Tg, was raised about 1.2° C for each part of decomposed dicumyl peroxide. Above (Tg+12) the modulustemperature relations were linear with a slope that increased with increasing crosslinking. The creep rate was negligible except near the glass transition and at low values of fp. Values of G, read from these plots at seven temperatures, were plotted as a function of fp. The linearity of the two plots permits the derivation of the general relation: G=S(fp+B)T+H(fp+B)+A where A, B, H, and S are constants. The lines representing G as a function of fp at each temperature all intersected near the point, fp=0.45 phr, G=2.70 Mdyn cm−2(0.270 MN  m−2). . The constants were evaluated as A=2.70 Mdyn cm−2,B=−0.45 phr, S=5.925×10−3 Mdyn cm−2(phr)−1 K−1 and H=0.0684(Mdyn cm−2) (phr)−1. This equation represented satisfactorily all the data obtained at temperatures from —50 to +100° C for values of fp from about 1 to 24 phr.


1946 ◽  
Vol 19 (4) ◽  
pp. 900-914 ◽  
Author(s):  
John Rehner ◽  
Paul J. Flory

Abstract Experiments have been carried out to determine the chemical reactions that occur when Butyl rubber is vulcanized by quinone dioxime or related compounds. Observations have been made of the reactions of these substances with simple olefins, and of the effect of oxidizing agents on the dioxime-type of vulcanization of Butyl in solution. The theory is proposed that, in the vulcanization of Butyl by quinone dioxime or its esters, in presence of oxidizing agents, the active agent is p-dinitrosobenzene formed by oxidation of the dioxime. Chemical reactions are suggested for the subsequent cross-linking or vulcanizing steps, and the results of confirmatory experiments are presented. p-Dinitrosobenzene and other polynitroso compounds are active vulcanizing agents for Butyl, natural rubber, Buna-S, Buna-N, and Neoprene, and do not require the addition of an oxidizing agent. It is suggested that vulcanization of natural rubber by polynitro compounds involves their reduction to corresponding nitroso compounds as the first step, and that the nitroso group adds to rubber to produce cross-linkages.


2010 ◽  
Vol 60 (5) ◽  
pp. 743-750 ◽  
Author(s):  
María L Auad ◽  
Tara Richardson ◽  
William J Orts ◽  
Eliton S Medeiros ◽  
Luiz HC Mattoso ◽  
...  

2019 ◽  
Vol 6 (3) ◽  
pp. 65 ◽  
Author(s):  
Eduardo Espinosa ◽  
Daniel Filgueira ◽  
Alejandro Rodríguez ◽  
Gary Chinga-Carrasco

2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) oxidized cellulose nanofibrils (CNF) were used as ink for three-dimensional (3D) printing of porous structures with potential as wound dressings. Alginate (10, 20, 30 and 40 wt%) was incorporated into the formulation to facilitate the ionic cross-linking with calcium chloride (CaCl2). The effect of two different concentrations of CaCl2 (50 and 100 mM) was studied. The 3D printed hydrogels were freeze-dried to produce aerogels which were tested for water absorption. Scanning Electronic Microscopy (SEM) pictures demonstrated that the higher the concentration of the cross-linker the higher the definition of the printed tracks. CNF-based aerogels showed a remarkable water absorption capability. Although the incorporation of alginate and the cross-linking with CaCl2 led to shrinkage of the 3D printed constructs, the approach yielded suitable porous structures for water and moisture absorption. It is concluded that the 3D printed biocomposite structures developed in this study have characteristics that are promising for wound dressings devices.


2013 ◽  
Vol 773 ◽  
pp. 668-672
Author(s):  
Jun Liang Liu ◽  
Ping Liu ◽  
Xiao Qiang Tang ◽  
Dong Zeng ◽  
Xing Kai Zhang ◽  
...  

In this paper, the blends of natural rubber with waste ground rubber powders have been prepared by mechano-chemical activation method. The influences of particle sizes on both processing performances and mechanical properties have been investigated. The results indicated that: the blends with waste ground rubber powders of smaller particle sizes approached to higher surface tensile and easily mechano-chemical activation, which led to the formation of complete homogenous re-vulcanization cross-linking structure and resulted in the improvements of the whole performances of the final products. The tensile strength, the elongation at break and tear strength approached to the highest value of 20.7MPa, 530% and 33.0 kN/m as the 100mesh waste ground rubber powders were used as the starting materials.


Sign in / Sign up

Export Citation Format

Share Document