Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park

CATENA ◽  
2013 ◽  
Vol 104 ◽  
pp. 58-66 ◽  
Author(s):  
Joseph M. Smoak ◽  
Joshua L. Breithaupt ◽  
Thomas J. Smith ◽  
Christian J. Sanders
2019 ◽  
Author(s):  
G. Lynn Wingard ◽  
◽  
Miriam C. Jones ◽  
Sarah E. Bergstresser ◽  
Bethany L. Stackhouse ◽  
...  

2020 ◽  
Author(s):  
Davide Oppo ◽  
Luca De Siena ◽  
David Kemp

<p>Methane seepage at the seafloor is a source of carbon in the marine environment and has long been recognized as an important window into the deep geo-, hydro-, and bio-spheres. However, the processes and temporal patterns of natural methane emission over multi-million-year time scales are still poorly understood. The microbially-mediated methane oxidation leads to the precipitation of authigenic carbonate minerals within subseafloor sediments, thus providing a potentially extensive record of past methane emission. In this study, we used data on methane-derived authigenic carbonates to build a proxy time series of seafloor methane emission over the last 150 My. We quantitatively demonstrate that variations in sea level and organic carbon burial are the dominant controls on methane leakage since the Early Cretaceous. Sea level controls variations of methane seepage by imposing smooth trends with cyclicities in the order of tens of My. Organic carbon burial shows the same cyclicities and instantaneously controls the volumes of methane released thanks to the rapid generation of biogenic methane. The identified fundamental (26-27 My) cyclicity matches those observed in the carbon cycle associated with plate tectonic processes, the atmospheric CO<sub>2</sub>, the oceanic anoxic events, and mass extinction events. A higher (12 My) cyclicity relates to modulations of Milankovitch eccentricity cycles and to variations in global tectonics. These analogies demonstrate that the seafloor methane seepage across the last 150 My relates to a large spectrum of global phenomena and thus has key implications for a better understanding of methane cycling at the present day. Temporal correlation analysis supports the evidence that the modern expansion of hypoxic areas and its effect on organic carbon burial may lead to higher seawater methane concentrations over the coming centuries.</p>


2006 ◽  
Vol 143 (5) ◽  
pp. 561-608 ◽  
Author(s):  
IAN JARVIS ◽  
ANDREW S. GALE ◽  
HUGH C. JENKYNS ◽  
MARTIN A. PEARCE

Carbon stable-isotope variation through the Cenomanian–Santonian stages is characterized using data for 1769 bulk pelagic carbonate samples collected from seven Chalk successions in England. The sections show consistent stratigraphic trends and δ13C values that provide a basis for high-resolution correlation. Positive and negative δ13C excursions and inflection points on the isotope profiles are used to define 72 isotope events. Key markers are provided by positive δ13C excursions of up to +2‰: the Albian/Cenomanian Boundary Event; Mid-Cenomanian Event I; the Cenomanian/Turonian Boundary Event; the Bridgewick, Hitch Wood and Navigation events of Late Turonian age; and the Santonian/Campanian Boundary Event. Isotope events are isochronous within a framework provided by macrofossil datum levels and bentonite horizons. An age-calibrated composite δ13C reference curve and an isotope event stratigraphy are constructed using data from the English Chalk. The isotope stratigraphy is applied to successions in Germany, France, Spain and Italy. Correlation with pelagic sections at Gubbio, central Italy, demonstrates general agreement between biostratigraphic and chemostratigraphic criteria in the Cenomanian–Turonian stages, confirming established relationships between Tethyan planktonic foraminiferal and Boreal macrofossil biozonations. Correlation of the Coniacian–Santonian stages is less clear cut: magnetostratigraphic evidence for placing the base of Chron 33r near the base of the Upper Santonian is in good agreement with the carbon-iso-tope correlation, but generates significant anomalies regarding the placement of the Santonian and Campanian stage boundaries with respect to Tethyan planktonic foraminiferal and nannofossil zones. Isotope stratigraphy offers a more reliable criterion for detailed correlation of Cenomanian–Santonian strata than biostratigraphy. With the addition of Campanian δ13C data from one of the English sections, a composite Cenomanian–Campanian age-calibrated reference curve is presented that can be utilized in future chemostratigraphic studies.The Cenomanian–Campanian carbon-isotope curve is remarkably similar in shape to supposedly eustatic sea-level curves: increasing δ13C values accompanying sea-level rise associated with transgression, and falling δ13C values characterizing sea-level fall and regression. The correlation between carbon isotopes and sea-level is explained by variations in epicontinental sea area affecting organic-matter burial fluxes: increasing shallow sea-floor area and increased accommodation space accompanying sea-level rise allowed more efficient burial of marine organic matter, with the preferential removal of 12C from the marine carbon reservoir. During sea-level fall, reduced seafloor area, marine erosion of previously deposited sediments, and exposure of basin margins led to reduced organic-carbon burial fluxes and oxidation of previously deposited organic matter, causing falling δ13C values. Additionally, drowning of carbonate platforms during periods of rapid sea-level rise may have reduced the global inorganic relative to the organic carbon flux, further enhancing δ13C values, while renewed platform growth during late transgressions and highstands prompted increased carbonate deposition. Variations in nutrient supply, changing rates of oceanic turnover, and the sequestration or liberation of methane from gas hydrates may also have played a role in controlling carbon-isotope ratios.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Hannah Thomasy

Changes in sea level and organic carbon burial may have affected seafloor methane seepage over the past 150 million years.


2016 ◽  
Author(s):  
Carol A. Wilson ◽  
◽  
Michael Steckler ◽  
Steven L. Goodbred ◽  
Richard Hale ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Razum ◽  
Petra Bajo ◽  
Dea Brunović ◽  
Nikolina Ilijanić ◽  
Ozren Hasan ◽  
...  

AbstractThe drivers of organic carbon (OC) burial efficiency are still poorly understood despite their key role in reliable projections of future climate trends. Here, we provide insights on this issue by presenting a paleoclimate time series of sediments, including the OC contents, from Lake Veliko jezero, Croatia. The Sr/Ca ratios of the bulk sediment are mainly derived from the strontium (Sr) and calcium (Ca) concentrations of needle-like aragonite in Core M1-A and used as paleotemperature and paleohydrology indicators. Four major and six minor cold and dry events were detected in the interval from 8.3 to 2.6 calibrated kilo anno before present (cal ka BP). The combined assessment of Sr/Ca ratios, OC content, carbon/nitrogen (C/N) ratios, stable carbon isotope (δ13C) ratios, and modeled geochemical proxies for paleoredox conditions and aeolian input revealed that cold and dry climate states promoted anoxic conditions in the lake, thereby enhancing organic matter preservation and increasing the OC burial efficiency. Our study shows that the projected future increase in temperature might play an important role in the OC burial efficiency of meromictic lakes.


2021 ◽  
Vol 13 (13) ◽  
pp. 7503
Author(s):  
Alexander Boest-Petersen ◽  
Piotr Michalak ◽  
Jamal Jokar Arsanjani

Anthropogenically-induced climate change is expected to be the contributing cause of sea level rise and severe storm events in the immediate future. While Danish authorities have downscaled the future oscillation of sea level rise across Danish coast lines in order to empower the coastal municipalities, there is a need to project the local cascading effects on different sectors. Using geospatial analysis and climate change projection data, we developed a proposed workflow to analyze the impacts of sea level rise in the coastal municipalities of Guldborgsund, located in Southeastern Denmark as a case study. With current estimates of sea level rise and storm surge events, the island of Falster can expect to have up to 19% of its landmass inundated, with approximately 39% of the population experiencing sea level rise directly. Developing an analytical workflow can allow stakeholders to understand the extent of expected sea level rise and consider alternative methods of prevention at the national and local levels. The proposed approach along with the choice of data and open source tools can empower other communities at risk of sea level rise to plan their adaptation.


Sign in / Sign up

Export Citation Format

Share Document