Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage?An ab initio theoretical study

2007 ◽  
Vol 120 (3-4) ◽  
pp. 341-345 ◽  
Author(s):  
Giannis Mpourmpakis ◽  
George E. Froudakis
2015 ◽  
Vol 29 (13) ◽  
pp. 1550062 ◽  
Author(s):  
Minghui Wang ◽  
Xinlu Cheng ◽  
Dahua Ren ◽  
Hong Zhang ◽  
Yongjian Tang

The hydrogen-rich compound ( H 2)n CH 4 (for n = 1, 2, 3, 4) or for short ( H 2)n M is one of the most promising hydrogen storage materials. The ( H 2)4 M molecule is the best hydrogen-rich compound among the ( H 2)n M structures and it can reach the hydrogen storage capacity of 50.2 wt.%. However, the ( H 2)n M always requires a certain pressure to remain stable. In this work, we first investigated the binding energy of the different structures in ( H 2)n M and energy barrier of H 2 rotation under different pressures at ambient temperature, applying ab initio methods based on van der Waals density functional (vdW-DF). It was found that at 0 GPa, the ( H 2)n M is not stable, while at 5.8 GPa, the stability of ( H 2)n M strongly depends on its structure. We further investigate the Raman spectra of ( H 2)n M structures at 5.8 GPa and found the results were consistent with experiments. Excitingly, we found that boron nitride nanotubes (BNNTs) and graphite and hexagonal boron nitride ( h - BN ) can be used to store ( H 2)4 M , which give insights into hydrogen storage practical applications.


1997 ◽  
Vol 86 (1-3) ◽  
pp. 2379-2380 ◽  
Author(s):  
Bo-Cheng Wang ◽  
Ming-Hua Tsai ◽  
Yu-Ma Chou

2009 ◽  
Vol 58 (2) ◽  
pp. 1126
Author(s):  
Liu Xiu-Ying ◽  
Wang Chao-Yang ◽  
Tang Yong-Jian ◽  
Sun Wei-Guo ◽  
Wu Wei-Dong ◽  
...  

2021 ◽  
Vol 21 (11) ◽  
pp. 5499-5509
Author(s):  
Rosely Maria dos Santos Cavaleiro ◽  
Tiago da Silva Arouche ◽  
Phelipe Seiichi Martins Tanoue ◽  
Tais Souza Sá Pereira ◽  
Raul Nunes de Carvalho Junior ◽  
...  

Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps. The hormones studied were estrone, estradiol, estriol, progesterone, ethinylestradiol, diethylbestrol, and levonorgestrel in carbon nanotubes (CNTs) and boron nitride (BNNTs). The most efficient nanofiltrations were for fields with low intensities in the order of 10-8 au and 10-7 au. The studied nanotubes can be used in membranes for nanofiltration in water treatment plants due to the evanescent field potential caused by the action of the electric field inside. Our data showed that the action of EF in conjunction with the van der Walls forces of the nanotubes is sufficient to generate the attractive potential. Evaluating the transport of water molecules in CNTs and BNNTs, under the influence of the electric field, a sequence of simulations with the same boundary conditions was carried out, seeking to know the percentage of water molecules filtered in the nanotubes.


Small Methods ◽  
2017 ◽  
Vol 1 (9) ◽  
Author(s):  
Kate E. Walker ◽  
Graham A. Rance ◽  
Áron Pekker ◽  
Hajnalka M. Tóháti ◽  
Michael W. Fay ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
pp. 6589-6607

We have investigated the various nanotube (NT)-water complexes as important host-guest complexes via the DFT method using B3LYP/6-31G* and M06/6-31G* levels of theory. These NTs include single-walled and double-walled carbon nanotubes (SWCNT and DWCNT, respectively). In addition, the boron nitride nanotube (BNNT) and tip-functionalized CNTs are also designed. All geometries turn out as minima on their energy surfaces. Calculated structural and thermodynamic parameters, along with atoms in molecules (AIM) and natural bond orbital (NBO) analyses, indicate that water inside the SWCNTs shows a higher interaction with NT where the nature of interactions is partially electrostatic-partially covalent. Therefore, the SWCNTs turn out as the best candidates for carrying and storage the water molecules.


Sign in / Sign up

Export Citation Format

Share Document