Understanding the relationship between DNA methylation and phenotypic plasticity in crop plants

Author(s):  
S. Amoah ◽  
M. Wilkinson ◽  
J. Dunwell ◽  
G. King
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristian Carmeli ◽  
Zoltán Kutalik ◽  
Pashupati P. Mishra ◽  
Eleonora Porcu ◽  
Cyrille Delpierre ◽  
...  

AbstractIndividuals experiencing socioeconomic disadvantage in childhood have a higher rate of inflammation-related diseases decades later. Little is known about the mechanisms linking early life experiences to the functioning of the immune system in adulthood. To address this, we explore the relationship across social-to-biological layers of early life social exposures on levels of adulthood inflammation and the mediating role of gene regulatory mechanisms, epigenetic and transcriptomic profiling from blood, in 2,329 individuals from two European cohort studies. Consistently across both studies, we find transcriptional activity explains a substantive proportion (78% and 26%) of the estimated effect of early life disadvantaged social exposures on levels of adulthood inflammation. Furthermore, we show that mechanisms other than cis DNA methylation may regulate those transcriptional fingerprints. These results further our understanding of social-to-biological transitions by pinpointing the role of gene regulation that cannot fully be explained by differential cis DNA methylation.


2021 ◽  
Vol 28 ◽  
Author(s):  
Chunyan Ao ◽  
Lin Gao ◽  
Liang Yu

: DNA methylation is an important mode of regulation in epigenetic mechanisms, and it is one of the research foci in the field of epigenetics. DNA methylation modification affects a series of biological processes, such as eukaryotic cell growth, differentiation and transformation mechanisms, by regulating gene expression. In this review, we systematically summarized the DNA methylation databases, prediction tools for DNA methylation modification, machine learning algorithms for predicting DNA methylation modification, and the relationship between DNA methylation modification and diseases such as hypertension, Alzheimer's disease, diabetic nephropathy, and cancer. An in-depth understanding of DNA methylation mechanisms can promote accurate prediction of DNA methylation modifications and the treatment and diagnosis of related diseases.


2020 ◽  
Author(s):  
Melanie Lindner ◽  
Veronika N. Laine ◽  
Irene Verhagen ◽  
Heidi M. Viitaniemi ◽  
Marcel E. Visser ◽  
...  

ABSTRACTClimate change significantly impacts natural populations, particularly phenology traits, like the seasonal onset of reproduction in birds. This impact is mainly via plastic responses in phenology traits to changes in the environment, but the molecular mechanism mediating this plasticity remains elusive. Epigenetic modifications can mediate plasticity and consequently constitute promising candidates for mediating phenology traits. Here, we used genome-wide DNA methylation profiles of individual great tit (Parus major) females that we blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional variation in DNA methylation within the regulatory region of genes known to play key roles in avian reproduction that are in line with observed changes in gene expression in chickens. Our findings provide an important step towards unraveling the molecular mechanism mediating a key life history trait, an essential knowledge-gap for understanding how natural populations may cope with future climate change.IMPACT SUMMARYNatural populations are increasingly challenged by changing environmental conditions like global increases in temperature. A key way for species to adapt to global warming is via phenotypic plasticity, i.e. the ability to adjust the expression of traits to the environment. We, however, know little about how the environment can interact with an organism’s genetic make-up to shape its trait value. Epigenetic marks are known to vary with the environment and can modulate the expression of traits without any change in the genetic make-up and therefore have the potential to mediate phenotypic plasticity.To study the role of epigenetics for phenotypic plasticity, we here focus on the great tit (Parus major), a species that is strongly affected by global warming and plastic for temperature in an essential phenology trait, the seasonal onset of egg laying. As a first step, we investigated whether great tit females show within-individual and short-term variation in DNA methylation that corresponds to changes in the reproductive state of females. We therefore housed breeding pairs in climate-controlled aviaries to blood sample each female repeatedly throughout the breeding season and used these repeated samples for methylation profiling.We found rapid and directional variation in DNA methylation at the time females prepared to initiate egg laying that is located within the regulatory region of genes that have previously described functions for avian reproduction. Although future work is needed to establish a causal link between the observed temporal variation in DNA methylation and the onset of reproduction in female great tits, our work highlights the potential role for epigenetic modifications in mediating an essential phenology trait that is sensitive to temperatures.


2021 ◽  
Vol 13 ◽  
Author(s):  
Pei-Lun Kuo ◽  
Ann Zenobia Moore ◽  
Frank R. Lin ◽  
Luigi Ferrucci

Objectives: Age-related hearing loss (ARHL) is highly prevalent among older adults, but the potential mechanisms and predictive markers for ARHL are lacking. Epigenetic age acceleration has been shown to be predictive of many age-associated diseases and mortality. However, the association between epigenetic age acceleration and hearing remains unknown. Our study aims to investigate the relationship between epigenetic age acceleration and audiometric hearing in the Baltimore Longitudinal Study of Aging (BLSA).Methods: Participants with both DNA methylation and audiometric hearing measurements were included. The main independent variables are epigenetic age acceleration measures, including intrinsic epigenetic age acceleration—“IEAA,” Hannum age acceleration—“AgeAccelerationResidualHannum,” PhenoAge acceleration—“AgeAccelPheno,” GrimAge acceleration—“AgeAccelGrim,” and methylation-based pace of aging estimation—“DunedinPoAm.” The main dependent variable is speech-frequency pure tone average. Linear regression was used to assess the association between epigenetic age acceleration and hearing.Results: Among the 236 participants (52.5% female), after adjusting for age, sex, race, time difference between measurements, cardiovascular factors, and smoking history, the effect sizes were 0.11 995% CI: (–0.00, 0.23), p = 0.054] for Hannum’s clock, 0.08 [95% CI: (–0.03, 0.19), p = 0.143] for Horvath’s clock, 0.10 [95% CI: (–0.01, 0.21), p = 0.089] for PhenoAge, 0.20 [95% CI: (0.06, 0.33), p = 0.004] for GrimAge, and 0.21 [95% CI: (0.09, 0.33), p = 0.001] for DunedinPoAm.Discussion: The present study suggests that some epigenetic age acceleration measurements are associated with hearing. Future research is needed to study the potential subclinical cardiovascular causes of hearing and to investigate the longitudinal relationship between DNA methylation and hearing.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Roberta Magnano San Lio ◽  
Giuliana Favara ◽  
Claudia La Mastra ◽  
...  

Uncovering the relationship between body mass index (BMI) and DNA methylation could be useful to understand molecular mechanisms underpinning the effects of obesity. Here, we presented a cross-sectional study, aiming to evaluate the association of BMI and obesity with long interspersed nuclear elements (LINE-1) methylation, among 488 women from Catania, Italy. LINE-1 methylation was assessed in leukocyte DNA by pyrosequencing. We found a negative association between BMI and LINE-1 methylation level in both the unadjusted and adjusted linear regression models. Accordingly, obese women exhibited lower LINE-1 methylation level than their normal weight counterpart. This association was confirmed after adjusting for the effect of age, educational level, employment status, marital status, parity, menopause, and smoking status. Our findings were in line with previous evidence and encouraged further research to investigate the potential role of DNA methylation markers in the management of obesity.


2018 ◽  
Author(s):  
Eilis Hannon ◽  
Tyler J Gorrie-Stone ◽  
Melissa C Smart ◽  
Joe Burrage ◽  
Amanda Hughes ◽  
...  

ABSTRACTCharacterizing the complex relationship between genetic, epigenetic and transcriptomic variation has the potential to increase understanding about the mechanisms underpinning health and disease phenotypes. In this study, we describe the most comprehensive analysis of common genetic variation on DNA methylation (DNAm) to date, using the Illumina EPIC array to profile samples from the UK Household Longitudinal study. We identified 12,689,548 significant DNA methylation quantitative trait loci (mQTL) associations (P < 6.52x10-14) occurring between 2,907,234 genetic variants and 93,268 DNAm sites, including a large number not identified using previous DNAm-profiling methods. We demonstrate the utility of these data for interpreting the functional consequences of common genetic variation associated with > 60 human traits, using Summary data–based Mendelian Randomization (SMR) to identify 1,662 pleiotropic associations between 36 complex traits and 1,246 DNAm sites. We also use SMR to characterize the relationship between DNAm and gene expression, identifying 6,798 pleiotropic associations between 5,420 DNAm sites and the transcription of 1,702 genes. Our mQTL database and SMR results are available via a searchable online database (http://www.epigenomicslab.com/online-data-resources/) as a resource to the research community.


2021 ◽  
Author(s):  
Tianyu Dong ◽  
Xiaoyan Wei ◽  
Qianting Qi ◽  
Peilei Chen ◽  
Yanqing Zhou ◽  
...  

Abstract Background: Epigenetic regulation plays a significant role in the accumulation of plant secondary metabolites. The terpenoids are the most abundant in the secondary metabolites of plants, iridoid glycosides belong to monoterpenoids which is one of the main medicinal components of R.glutinosa. At present, study on iridoid glycosides mainly focuses on its pharmacology, accumulation and distribution, while the mechanism of its biosynthesis and the relationship between DNA methylation and plant terpene biosynthesis are seldom reports. Results: The research showed that the expression of DXS, DXR, 10HGO, G10H, GPPS and accumulation of iridoid glycosides increased at first and then decreased with the maturity of R.glutinosa, and under different concentrations of 5-azaC, the expression of DXS, DXR, 10HGO, G10H, GPPS and the accumulation of total iridoid glycosides were promoted, the promotion effect of low concentration (15μM-50μM) was more significant, the content of genomic DNA 5mC decreased significantly, the DNA methylation status of R.glutinosa genomes was also changed. DNA demethylation promoted gene expression and increased the accumulation of iridoid glycosides, but excessive demethylation inhibited gene expression and decreased the accumulation of iridoid glycosides. Conclusion: The analysis of DNA methylation, gene expression, and accumulation of iridoid glycoside provides insights into accumulation of terpenoids in R.glutinosa and lays a foundation for future studies on the effects of epigenetics on the synthesis of secondary metabolites.


Sign in / Sign up

Export Citation Format

Share Document