Synthesis of optimal reaction-separation system with sufficient operational flexibility

2021 ◽  
pp. 117316
Author(s):  
Changfang Yin ◽  
Guilian Liu
2012 ◽  
Author(s):  
Benoit Chevalier-Roignant ◽  
Christoph M. Flath ◽  
Lenos Trigeorgis

2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


2017 ◽  
Vol 14 (6) ◽  
pp. 883-903 ◽  
Author(s):  
Boppudi Hari Babu ◽  
Gandavaram Syam Prasad ◽  
Chamarthi Naga Raju ◽  
Mandava Venkata Basaveswara Rao

Background: Michaelis–Arbuzov reaction has played a key role for the synthesis of dialkyl or diaryl phosphonates by reacting various alkyl or aryl halides with trialkyl or triaryl phosphite. This reaction is very versatile in the formation of P-C bond from the reaction of aliphatic halides with phosphinites or phosphites to yield phosphonates, phosphinates, phosphine oxides. The Arbuzov reaction developed some methodologies, possible mechanistic pathways, selectivity, potential applications and biologically active various phosphonates. Objective: The synthesis of phosphonates via Michaelis–Arbuzov reaction with many new and fascinating methodologies were developed and disclosed in the literature, and these are explored in this review. Conclusion: This review has discussed past developments and vast potential applications of Arbuzov reaction in the synthesis of organophosphonates. As presented in this review, various synthetic methodologies were developed to prepare a large variety of phosphonates. Improvements in the reaction conditions of Lewis-acid mediated Arbuzov rearrangement as well as the development of MW-assisted Arbuzov rearrangement were discussed. Finally, to achieve high selectivities and yields, fine-tuning of reaction conditions including solvent type, temperature, and optimal reaction times to be considered.


1979 ◽  
Vol 44 (11) ◽  
pp. 3395-3404 ◽  
Author(s):  
Pavel Posádka ◽  
Lumír Macholán

An oxygen electrode of the Clark type, coated by a thin, active layer of chemically insolubilized ascorbate oxidase from squash peelings specifically detects by measuring oxygen uptake 10 to 400 μg of ascorbic acid in 3 ml of phosphate buffer. The record of current response to substrate addition lasts 1-2 min. The ascorbic acid values determined in various samples of fruit juices are in good agreement with the data obtained by titration and polarography. The suitable composition of the membrane and its lifetime and stability during long-term storage are described; optimal reaction conditions of vitamin C determination and the possibilities of interference of other compounds are also examined. Of the 35 phenols, aromatic amines and acids tested chlorogenic acid only can cause a positive error provided that the enzyme membrane has been prepared from ascorbate oxidase of high purity.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2532 ◽  
Author(s):  
Md. Nahid Pervez ◽  
Felix Y. Telegin ◽  
Yingjie Cai ◽  
Dongsheng Xia ◽  
Tiziano Zarra ◽  
...  

In this study, a Fenton-activated persulfate (Fe2+/PS) system was introduced for the efficient degradation of Mordant Blue 9 (MB 9) as a textile dye in an aqueous solution. Results showed that the degradation of MB 9 was markedly influenced by operational parameters, such as initial pH, PS concentration, Fe2+ concentration, and initial dye concentration. Optimal reaction conditions were then determined. Inorganic anions, such as Cl− and HCO3−, enhanced the degradation efficiency of MB 9 under optimal conditions. Addition of HCO3− reduced the degradation performance of MB 9, whereas the addition of Cl− increased the degradation percentage of MB 9. In addition, quenching experiments were conducted using methanol and tert-butyl alcohol as scavengers, and methanol was identified as an effective scavenger. Thus, the degradation of MB 9 was attributed to S O 4 • − and •OH radicals. The degradation and mineralization efficiency of MB 9 was significantly reduced using the conventional Fenton process i.e., Fe2+/ hydrogen peroxide (HP) because of the formation of a Fe complex during degradation. Meanwhile, the Fe2+/persulfate (PS) system improved the degradation and mineralization performance.


Author(s):  
Timothy Aljoscha Frede ◽  
Marlene Dietz ◽  
Norbert Kockmann

AbstractFast chemical process development is inevitably linked to an optimized determination of thermokinetic data of chemical reactions. A miniaturized flow calorimeter enables increased sensitivity when examining small amounts of reactants in a short time compared to traditional batch equipment. Therefore, a methodology to determine optimal reaction conditions for calorimetric measurement experiments was developed and is presented in this contribution. Within the methodology, short-cut calculations are supplemented by computational fluid dynamics (CFD) simulations for a better representation of the hydrodynamics within the microreactor. This approach leads to the effective design of experiments. Unfavourable experimental conditions for kinetics experiments are determined in advance and therefore, need not to be considered during design of experiments. The methodology is tested for an instantaneous acid-base reaction. Good agreement of simulations was obtained with experimental data. Thus, the prediction of the hydrodynamics is enabled and the first steps towards a digital twin of the calorimeter are performed. The flow rates proposed by the methodology are tested for the determination of reaction enthalpy and showed that reasonable experimental settings resulted. Graphical abstract A methodology is suggested to evaluate optimal reaction conditions for efficientacquisition of kinetic data. The experimental design space is limited by thestepwise determination of important time scales based on specified input data.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jerzy Bienek ◽  
Piotr Komarnicki ◽  
Jerzy Detyna

AbstractThis article presents the main problems associated with cereal harvesting in sloping areas. The presented innovative aerodynamic system supporting the separating unit of combine harvester can be one of the ways to counteract the negative effects of harvesting machines work on slopes. The Monte Carlo numerical method, presented in this article, was applied in the optimization of an aerodynamic sieve separation process on an inclined terrain. The given variables are the transverse slope of separator α (of the sieve), longitudinal slope β and the output of the main and side fans. The Monte Carlo method makes it possible to determine an optimized set of parameters (α = 10°, β = 2.8°, δ = 9°), the output of the main fan (0.67 m3 s−1) and the output of the side fan (1.86 m3 s−1), allowing to obtain the best indicator values of 2.1% grain loss and 97.5% grain purity.


Sign in / Sign up

Export Citation Format

Share Document