Bifurcation of limit cycles in quadratic Hamiltonian systems with various degree polynomial perturbations

2012 ◽  
Vol 45 (6) ◽  
pp. 772-794 ◽  
Author(s):  
P. Yu ◽  
M. Han
2020 ◽  
Vol 30 (15) ◽  
pp. 2050230
Author(s):  
Jiaxin Wang ◽  
Liqin Zhao

In this paper, by using Picard–Fuchs equations and Chebyshev criterion, we study the bifurcation of limit cycles for degenerate quadratic Hamilton systems with polycycles [Formula: see text] or [Formula: see text] under the perturbations of piecewise smooth polynomials with degree [Formula: see text]. Roughly speaking, for [Formula: see text], a polycycle [Formula: see text] is cyclically ordered collection of [Formula: see text] saddles together with orbits connecting them in specified order. The discontinuity is on the line [Formula: see text]. If the first order Melnikov function is not equal to zero identically, it is proved that the upper bounds of the number of limit cycles bifurcating from each of the period annuli with the boundary [Formula: see text] and [Formula: see text] are respectively [Formula: see text] and [Formula: see text] (taking into account the multiplicity).


2013 ◽  
Vol 23 (01) ◽  
pp. 1350005 ◽  
Author(s):  
PEI YU ◽  
MAOAN HAN

In this paper, we show that generic planar quadratic Hamiltonian systems with third degree polynomial perturbation can have eight small-amplitude limit cycles around a center. We use higher-order focus value computation to prove this result, which is equivalent to the computation of higher-order Melnikov functions. Previous results have shown, based on first-order and higher-order Melnikov functions, that planar quadratic Hamiltonian systems with third degree polynomial perturbation can have five or seven small-amplitude limit cycles around a center. The result given in this paper is a further improvement.


2015 ◽  
Vol 25 (05) ◽  
pp. 1550066 ◽  
Author(s):  
Junmin Yang ◽  
Xianbo Sun

In this paper, we first present some general theorems on bifurcation of limit cycles in near-Hamiltonian systems with a nilpotent saddle or a nilpotent cusp. Then we apply the theorems to study the number of limit cycles for some polynomial Liénard systems with a nilpotent saddle or a nilpotent cusp, and obtain some new estimations on the number of limit cycles of these systems.


2009 ◽  
Vol 19 (12) ◽  
pp. 4117-4130 ◽  
Author(s):  
MAOAN HAN ◽  
JUNMIN YANG ◽  
PEI YU

In this paper, we consider bifurcation of limit cycles in near-Hamiltonian systems. A new method is developed to study the analytical property of the Melnikov function near the origin for such systems. Based on the new method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Moreover, we consider the case that the Hamiltonian function of the system depends on parameters, in addition to the coefficients involved in perturbations, which generates more limit cycles in the neighborhood of the origin. The results are applied to a quadratic system with cubic perturbations to show that the system can have five limit cycles in the vicinity of the origin.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wentao Huang ◽  
Ting Chen ◽  
Tianlong Gu

Center conditions and the bifurcation of limit cycles for a seven-degree polynomial differential system in which the origin is a nilpotent critical point are studied. Using the computer algebra system Mathematica, the first 14 quasi-Lyapunov constants of the origin are obtained, and then the conditions for the origin to be a center and the 14th-order fine focus are derived, respectively. Finally, we prove that the system has 14 limit cycles bifurcated from the origin under a small perturbation. As far as we know, this is the first example of a seven-degree system with 14 limit cycles bifurcated from a nilpotent critical point.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.


2010 ◽  
Vol 20 (05) ◽  
pp. 1379-1390 ◽  
Author(s):  
XIA LIU ◽  
MAOAN HAN

In this paper, the general perturbation of piecewise Hamiltonian systems on the plane is considered. When the unperturbed system has a family of periodic orbits, similar to the perturbations of smooth system, an expression of the first order Melnikov function is derived, which can be used to study the number of limit cycles bifurcated from the periodic orbits. As applications, the number of bifurcated limit cycles of several concrete piecewise systems are presented.


Sign in / Sign up

Export Citation Format

Share Document