Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor

Chemosphere ◽  
2006 ◽  
Vol 63 (6) ◽  
pp. 926-933 ◽  
Author(s):  
Lei Qin ◽  
Yu Liu
2012 ◽  
Vol 97 (20) ◽  
pp. 9235-9243 ◽  
Author(s):  
Dong Wei ◽  
Xiaodong Xue ◽  
Shuwei Chen ◽  
Yongfang Zhang ◽  
Liangguo Yan ◽  
...  

2002 ◽  
Vol 46 (9) ◽  
pp. 219-227 ◽  
Author(s):  
S. Murat ◽  
E. Atesş Genceli ◽  
R. Tasşli ◽  
N. Artan ◽  
D. Orhon

The paper evaluates the organic carbon and nitrogen removal performance of the sequencing batch reactor (SBR), technology for tannery wastewater. For this purpose, a pilot-scale SBR was installed on site to treat the plain-settled tannery effluent. The study involved wastewater characterization, start-up and operation of the reactor for carbon and nitrogen removal and model evaluation of system performance. Its removal efficiency was compared with that of the existing continuous-flow activated sludge system providing full treatment to wastewater from the Istanbul Tannery Organized Industrial District.


2011 ◽  
Vol 102 (3) ◽  
pp. 2536-2541 ◽  
Author(s):  
Yi-Jing Shi ◽  
Xin-Hua Wang ◽  
Hai-Bo Yu ◽  
Hui-Jun Xie ◽  
Shao-Xiang Teng ◽  
...  

1999 ◽  
Vol 22 (12) ◽  
pp. 990-996 ◽  
Author(s):  
Ju-Hyun KIM ◽  
Tetsuro SAKAMURA ◽  
Nobuo CHIBA ◽  
Osamu NISHIMURA ◽  
Ryuichi SUDO

2003 ◽  
Vol 48 (1) ◽  
pp. 207-214 ◽  
Author(s):  
A. Goltara ◽  
J. Martinez ◽  
R. Mendez

A 3.5 L Membrane Sequencing Batch Reactor (MSBR) was used for the treatment of a wastewater coming from the beamhouse section of a tannery. The wastewater, produced after the oxidation of sulphide compounds, contained average COD and ammonium concentrations of 550 and 90 mg/L respectively. The system was operated for a period of 150 days, with no sludge removal during the whole period of operation. The biomass concentration inside the reactor varied considerably, with maximum values close to 10 g/L at the end of operation. Low biomass yield values were achieved probably due to the low feed/microorganisms (F/M) ratio. An important accumulation of organic matter in the reactor was noticed, although the COD effluent was not affected due to the permeation through the membrane. The nature of this organic matter is finally discussed. Removal efficiencies close to 100% in ammonium and 90% in COD were achieved and the TN removal efficiency ranged from 60 to 90%.


Sign in / Sign up

Export Citation Format

Share Document