Biopartitioning micellar chromatography under different conditions: Insight into the retention mechanism and the potential to model biological processes

2020 ◽  
Vol 1621 ◽  
pp. 461027 ◽  
Author(s):  
Fotios Tsopelas ◽  
Panagiotis Danias ◽  
Athina Pappa ◽  
Anna Tsantili-Kakoulidou
2020 ◽  
Vol 27 ◽  
Author(s):  
Fırat Kurt

: Oligopeptide transporter 3 (OPT3) proteins are one of the subsets of OPT clade, yet little is known about these transporters. Therefore, homolog OPT3 proteins in several plant species were investigated and characterized using bioinformatical tools. Motif and co-expression analyses showed that OPT3 proteins may be involved in both biotic and abiotic stress responses as well as growth and developmental processes. AtOPT3 usually seemed to take part in Fe homeostasis whereas ZmOPT3 putatively interacted with proteins involved in various biological processes from plant defense system to stress responses. Glutathione (GSH), as a putative alternative chelating agent, was used in the AtOPT3 and ZmOPT3 docking analyses to identify their putative binding residues. The information given in this study will contribute to the understanding of OPT3 proteins’ interactions in various pathways and to the selection of potential ligands for OPT3s.


2020 ◽  
pp. 202-203
Author(s):  
PA De Valdoleiros

As medical doctors, we are expected to be the champions of health and the slayers of disease. Essential to the success of this battle is an understanding of, and insight into, the chemistry that allows you the opportunity of reading this article. It is not sufficient to name the parts. It is imperative that we understand how the parts work, the processes that lead to malfunctions, and how these malfunctions appear as signs and symptoms to which we eventually give a label. We have concentrated on the results of biological processes gone awry. It is time to deal with the causes.


2020 ◽  
Vol 21 (8) ◽  
pp. 2673 ◽  
Author(s):  
Kwang-Im Oh ◽  
Jinwoo Kim ◽  
Chin-Ju Park ◽  
Joon-Hwa Lee

The non-canonical structures of nucleic acids are essential for their diverse functions during various biological processes. These non-canonical structures can undergo conformational exchange among multiple structural states. Data on their dynamics can illustrate conformational transitions that play important roles in folding, stability, and biological function. Here, we discuss several examples of the non-canonical structures of DNA focusing on their dynamic characterization by NMR spectroscopy: (1) G-quadruplex structures and their complexes with target proteins; (2) i-motif structures and their complexes with proteins; (3) triplex structures; (4) left-handed Z-DNAs and their complexes with various Z-DNA binding proteins. This review provides insight into how the dynamic features of non-canonical DNA structures contribute to essential biological processes.


2020 ◽  
Vol 19 (5-6) ◽  
pp. 343-349
Author(s):  
Sara S Fonseca Costa ◽  
Marc Robinson-Rechavi ◽  
Jürgen A Ripperger

Abstract Aging and circadian rhythms are two biological processes that affect an organism, although at different time scales. Nevertheless, due to the overlap of their actions, it was speculated that both interfere or interact with each other. However, to address this question, a much deeper insight into these processes is necessary, especially at the cellular level. New methods such as single-cell RNA-sequencing (scRNA-Seq) have the potential to close this gap in our knowledge. In this review, we analyze applications of scRNA-Seq from the aging and circadian rhythm fields and highlight new findings emerging from the analysis of single cells, especially in humans or rodents. Furthermore, we judge the potential of scRNA-Seq to identify common traits of both processes. Overall, this method offers several advantages over more traditional methods analyzing gene expression and will become an important tool to unravel the link between these biological processes.


2001 ◽  
Vol 15 (5) ◽  
pp. 334-341 ◽  
Author(s):  
Y. Martín-Biosca ◽  
M. Molero-Monfort ◽  
S. Sagrado ◽  
R. M. Villanueva-Camañas ◽  
M. J. Medina-Hernández

2005 ◽  
Vol 1063 (1-2) ◽  
pp. 153-160 ◽  
Author(s):  
José María Bermúdez-Saldaña ◽  
Laura Escuder-Gilabert ◽  
María José Medina-Hernández ◽  
Rosa María Villanueva-Camañas ◽  
Salvador Sagrado

2013 ◽  
Vol 51 (3) ◽  
pp. T115-T140 ◽  
Author(s):  
Shannon E Mullican ◽  
Joanna R DiSpirito ◽  
Mitchell A Lazar

The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.


2017 ◽  
Vol 28 (11) ◽  
pp. 1580-1589 ◽  
Author(s):  
Yuta Shimamoto ◽  
Sachiko Tamura ◽  
Hiroshi Masumoto ◽  
Kazuhiro Maeshima

Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers.


Sign in / Sign up

Export Citation Format

Share Document