scholarly journals Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system

2015 ◽  
Vol 28 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Honglun Wang ◽  
Wentao Lyu ◽  
Peng Yao ◽  
Xiao Liang ◽  
Chang Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yongqiang Qi ◽  
Shuai Li ◽  
Yi Ke

In this paper, a three-dimensional path planning problem of an unmanned aerial vehicle under constant thrust is studied based on the artificial fluid method. The effect of obstacles on the original fluid field is quantified by the perturbation matrix, the streamlines can be regarded as the planned path for the unmanned aerial vehicle, and the tangential vector and the disturbance matrix of the artificial fluid method are improved. In particular, this paper addresses a novel algorithm of constant thrust fitting which is proposed through the impulse compensation, and then the constant thrust switching control scheme based on the isochronous interpolation method is given. It is proved that the planned path can avoid all obstacles smoothly and swiftly and reach the destination eventually. Simulation results demonstrate the effectiveness of this method.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987902 ◽  
Author(s):  
Ronglei Xie ◽  
Zhijun Meng ◽  
Yaoming Zhou ◽  
Yunpeng Ma ◽  
Zhe Wu

In order to solve the problem that the existing reinforcement learning algorithm is difficult to converge due to the excessive state space of the three-dimensional path planning of the unmanned aerial vehicle, this article proposes a reinforcement learning algorithm based on the heuristic function and the maximum average reward value of the experience replay mechanism. The knowledge of track performance is introduced to construct heuristic function to guide the unmanned aerial vehicles’ action selection and reduce the useless exploration. Experience replay mechanism based on maximum average reward increases the utilization rate of excellent samples and the convergence speed of the algorithm. The simulation results show that the proposed three-dimensional path planning algorithm has good learning efficiency, and the convergence speed and training performance are significantly improved.


2017 ◽  
Vol 266 ◽  
pp. 445-457 ◽  
Author(s):  
Chen YongBo ◽  
Mei YueSong ◽  
Yu JianQiao ◽  
Su XiaoLong ◽  
Xu Nuo

Author(s):  
Amaanullah ◽  
Muhammed Ahmed Lamba ◽  
Surya Prakash S ◽  
Shrikant S. Tangade ◽  
Syed Sehraab Nawaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document