Feature extraction based on Gabor filter and Support Vector Machine classifier in defect analysis of Thermoelectric Cooler Component

2021 ◽  
Vol 92 ◽  
pp. 107188
Author(s):  
Ming Zhao ◽  
Weiyu Qiu ◽  
Tingxi Wen ◽  
Tingdi Liao ◽  
Jianlong Huang
2020 ◽  
Vol 5 (2) ◽  
pp. 504
Author(s):  
Matthias Omotayo Oladele ◽  
Temilola Morufat Adepoju ◽  
Olaide ` Abiodun Olatoke ◽  
Oluwaseun Adewale Ojo

Yorùbá language is one of the three main languages that is been spoken in Nigeria. It is a tonal language that carries an accent on the vowel alphabets. There are twenty-five (25) alphabets in Yorùbá language with one of the alphabets a digraph (GB). Due to the difficulty in typing handwritten Yorùbá documents, there is a need to develop a handwritten recognition system that can convert the handwritten texts to digital format. This study discusses the offline Yorùbá handwritten word recognition system (OYHWR) that recognizes Yorùbá uppercase alphabets. Handwritten characters and words were obtained from different writers using the paint application and M708 graphics tablets. The characters were used for training and the words were used for testing. Pre-processing was done on the images and the geometric features of the images were extracted using zoning and gradient-based feature extraction. Geometric features are the different line types that form a particular character such as the vertical, horizontal, and diagonal lines. The geometric features used are the number of horizontal lines, number of vertical lines, number of right diagonal lines, number of left diagonal lines, total length of all horizontal lines, total length of all vertical lines, total length of all right slanting lines, total length of all left-slanting lines and the area of the skeleton. The characters are divided into 9 zones and gradient feature extraction was used to extract the horizontal and vertical components and geometric features in each zone. The words were fed into the support vector machine classifier and the performance was evaluated based on recognition accuracy. Support vector machine is a two-class classifier, hence a multiclass SVM classifier least square support vector machine (LSSVM) was used for word recognition. The one vs one strategy and RBF kernel were used and the recognition accuracy obtained from the tested words ranges between 66.7%, 83.3%, 85.7%, 87.5%, and 100%. The low recognition rate for some of the words could be as a result of the similarity in the extracted features.


Author(s):  
Nadia Smaoui Zghal ◽  
Marwa Zaabi ◽  
Houda Derbel

Aims: Skin cancer is a fairly critical disease all over the world and especially in Western countries and America. However, if it is perceived and treated early, it is quite often curable. The main risk factors for melanoma are exposure to UV rays, the presence of many moles, and heredity. For this reason, this work focuses on the issue of automatic diagnosis of melanoma. The aim is to extract significant features from pixels of the images based on an unsupervised deep learning technique which is the sparse autoencoder method. Methodology: A preprocessing phase is required to remove the artifacts and enhance the contrast of the images before proceeding with the feature extraction. Once the characteristics are extracted automatically, the support vector machine classifier and the k-nearest neighbors are applied for the classification phase. The objective is to differentiate between 3 categories: melanoma, suspected case, and non-melanoma. Finally, the PH2 database is used to test the proposed approaches (200 images are presented in this dataset: 80 atypical nevi, 80 common nevi, and 40 melanoma). Results: The obtained results in terms of specificity, accuracy, and sensitivity present noticeable performances with the support vector machine classifier (achieved 94 % overall accuracy) and the k-nearest neighbors (92 %). Conclusion: This study's experimental findings showed that the best performance was obtained by the approach based on a deep sparse autoencoder combined with support vector machine.


2021 ◽  
Vol 11 (10) ◽  
pp. 2558-2565
Author(s):  
K. Kavinkumar ◽  
T. Meeradevi

Brain tumors Analysis is problematic somewhat due to varied size, shape, location of tumor and the appearance and presence of brain tumor. Clinicians and radiologist have difficulty in identifying the tumor type. An efficient hybrid feature extraction method to classify the type of tumor accurately as meningioma, gliomas and pituitary tumor using SVM (support vector machine) classifier is proposed. The modified Non-Local Means (NLM) filter may be effectively used to get the pure image. The NLM filter is compared with common filters like median and wiener. From the denoised image the classification is done by training SVM using the texture features from the hybrid and efficient feature extraction technique.The accuracy of the classification is calculated and the SVM classifier training individual type of texture features and also with combined texture features and the performance is analyzed.


Sign in / Sign up

Export Citation Format

Share Document