A numerical investigation of the influence of yarn mechanical and physical properties on the ballistic impact behavior of a Kevlar KM2 ® woven fabric

2016 ◽  
Vol 95 ◽  
pp. 144-154 ◽  
Author(s):  
Tuan-Long Chu ◽  
Cuong Ha-Minh ◽  
Abdellatif Imad
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bethalihem T. Samuel ◽  
Marcin Barburski ◽  
Tsegaye Sh. Lemmi

AbstractA baby stroller allows the transportation of a child over long or short distances. The materials used to produce the stroller make it heavy for users, which creates difficulties when lifting the stroller. The goal of this project was to design and fabricate a three-dimensional (3D) fabric structure that can be used as part of a stroller seat to improve its mechanical and physical properties. The idea of implementing a woven 3D system allows the development of an egg-shaped or shell-like structure as part of a stroller seat. The combination of double-woven material and honeycomb polypropylene (as the reinforcing material) was used to create a 3D composite structure. Single and double layers of polypropylene honeycomb sandwiched within layers of linen flax fabric were used to prepare the composite samples. Subsequently, tests on mechanical and physical properties, such as density, flexural strength, and tensile strength, were carried out. Analysis of the results showed that the composite with one layer of honeycomb has half the density of polyvinyl chloride.


2021 ◽  
pp. 152808372199986
Author(s):  
Zeynab Behroozi ◽  
Hooshang Nosraty ◽  
Majid Tehrani

The present research aimed to investigate the effect of stitching angle and stacking sequence of stitched layers on high velocity impact behavior of composites reinforced by glass woven fabrics. To study the effect of stitching angle on ballistic impact behavior, six different angles of (0°), (90°), (45°), (0°,90°), (±45°) and (0°,90°,±45°) were chosen as stitching angles. These stitching angles were applied on eight layers of glass woven fabric. To study the effect of stacking sequence of stitched layers, a different number of layers were stitched together with the angle of 0°. Unstitched and stitched composites were exposed to high velocity impact with 180 m/s using a spherical projectile. The residual velocity of projectile and dimensions of damage area on the composites’ front and back sides were measured. It was found that the sample with the 45° stitching angle had the best behavior against ballistic impact and its energy absorption was significantly higher than the other samples. Stitching also reduces damage area in front and back sides of the composites and inhibits delamination.


2020 ◽  
pp. 152808372098046
Author(s):  
Lekhani Tripathi ◽  
Soumya Chowdhury ◽  
BK Behera

This study was carried out to understand and evaluate the response of 3 D woven fabrics upon the simulated ballistic forces. Under the low-velocity impact, analytical and numerical models were developed for determining the impact energy, which was used to evaluate the ballistic impact of projectile onto multiple-layered woven fabric panels based on the ballistic impact of single textile yarns. The behavior of primary and secondary yarns in a fabric under the ballistic impact was analyzed by both the models. The mechanisms of failure and energy dissipation of Kevlar fabric subjected to low-velocity impact were numerically investigated by using the ABAQUS platform as a tool of finite element method (FEM). The results obtained from numerical and analytical approaches were validated against experimental value which showed a good agreement.


2016 ◽  
Vol 88 ◽  
pp. 91-101 ◽  
Author(s):  
Cuong Ha-Minh ◽  
Abdellatif Imad ◽  
François Boussu ◽  
Toufik Kanit

2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


Sign in / Sign up

Export Citation Format

Share Document