Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading

2016 ◽  
Vol 105 ◽  
pp. 67-81 ◽  
Author(s):  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Jun Liu ◽  
Yong Li ◽  
Changzai Zhang ◽  
...  
2015 ◽  
Vol 65 ◽  
pp. 221-230 ◽  
Author(s):  
Pan Zhang ◽  
Jun Liu ◽  
Yuansheng Cheng ◽  
Hailiang Hou ◽  
Chunming Wang ◽  
...  

2017 ◽  
Vol 21 (3) ◽  
pp. 838-864 ◽  
Author(s):  
Yuansheng Cheng ◽  
Tianyu Zhou ◽  
Hao Wang ◽  
Yong Li ◽  
Jun Liu ◽  
...  

The ANSYS/Autodyn software was employed to investigate the dynamic responses of foam-filled corrugated core sandwich panels under air blast loading. The panels were assembled from metallic face sheets and corrugated webs, and PVC foam inserts with different filling strategies. To calibrate the proposed numerical model, the simulation results were compared with experimental data reported previously. The response of the panels was also compared with that of the empty (unfilled) sandwich panels. Numerical results show that the fluid–structure interaction effect was dominated by front face regardless of the foam fillers. Foam filling would reduce the level of deformation/failure of front face, but did not always decrease the one of back face. It is found that the blast performance in terms of the plastic deflections of the face sheets can be sorted as the following sequence: fully filled hybrid panel, front side filled hybrid panel, back side filled hybrid panel, and the empty sandwich panel. Investigation into energy absorption characteristic revealed that the front face and core web provided the most contribution on total energy absorption. A reverse order of panels was obtained when the maximization of total energy dissipation was used as the criteria of blast performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Jun Liu

Three-dimensional fully coupled simulation is conducted to analyze the dynamic response of sandwich panels comprising equal thicknesses face sheets sandwiching a corrugated core when subjected to localized impulse created by the detonation of cylindrical explosive. A large number of computational cases have been calculated to comprehensively investigate the performance of sandwich panels under near-field air blast loading. Results show that the deformation/failure modes of panels depend strongly on stand-off distance. The beneficial FSI effect can be enhanced by decreasing the thickness of front face sheet. The core configuration has a negligible influence on the peak reflected pressure, but it has an effect on the deflection of a panel. It is found that the benefits of a sandwich panel over an equivalent weight solid plate to withstand near-field air blast loading are more evident at lower stand-off distance.


2017 ◽  
Vol 78 ◽  
pp. 122-133 ◽  
Author(s):  
Ying Li ◽  
Weiguo Wu ◽  
Haiqing Zhu ◽  
Zhen Wu ◽  
Zhipeng Du

Author(s):  
Ting Liu ◽  
Yuansheng Cheng ◽  
Jun Liu ◽  
Ganchao Chen ◽  
Changhai Chen ◽  
...  

Abstract In this paper, the dynamic response of metallic Y-frame core sandwich plates subjected to air blast loading was investigated by employing the LS-DYNA software. The blast wave was generated by the directly detonation of TNT explosives. The deformation/failure modes and associated structural response were identified and analyzed in detail. Main attention was paid to explore the effects of face sheet thicknesses and core web thickness on the deformation response of Y-frame core sandwich plates. A comparison on the blast performance were drawn among the Y-frame core sandwich panel, corrugated core sandwich panel and solid plate in equal areal mass. Numerical results revealed that the Y-frame core sandwich panel experienced indent deformation in the front face, strut buckling in the core and large bending deformation in the back face under the stand-off distance of 100 mm. Increasing the face sheets and core web thicknesses could improve the blast performance of Y-frame core sandwich panels. The deflections of face sheets were sensitive to the variation of front face sheet and core thicknesses. Moreover, Y-frame sandwich panel has comparable anti-blast capacity with the corrugated counterparts and exhibits superior blast resistance than the solid plate.


Sign in / Sign up

Export Citation Format

Share Document